搜索资源列表
multisvm1
- 系统自带的svm只能实现二分类,这个svm可以做多分类-Svm system comes only achieve two categories that you can do more svm classification
regression1
- 基于MATLAB 第三方工具箱LSSVMLAB v1.8版本的多分类程序-Based on MATLAB Toolbox LSSVMLAB v1.8 version of the third-party multi-classification program
svm多核运算
- svm多核运算,实现高光谱数据分类,运行成功
FisherMultiClassDiscri
- 基于Fisher准则多分类特征提取,投影后采用最近邻算法和一对一投票法进行分类和交叉验证,附上数据实例-After feature extraction based on Fisher criterion with multicalsses, the projections are discriminated ultilizing the nearest neighbor algorithm and one-versus-one ballot to have a cross validation
2
- 用SVM进行多分类问题,对二分类问题的延伸,方法很有效-support vector machine
multilda
- 多分类线性判别分析,主要用于近红外及红外光谱等多元数据的模式识别问题-Multi-classification linear discriminant analysis, mainly used for pattern recognition problems near infrared and infrared spectroscopy, multivariate data
MovieRecommander
- 本算法采用多分类的机器学习的方式,通过样本学习,实现对观影者进行电影推荐。-The algorithm uses multi-way classification machine learning, learning through the sample, to achieve the moviegoers were movie recommendations.
SSELM-and-USELM
- 半监督核无监督极限学习机,用于半监督核无监督学习,比传统方法速度略快,且可以直接应用多分类问题-A semi-supervised nuclear unsupervised extreme learning machine, used for a semi-supervised kernel unsupervised learning, slightly faster than the traditional methods, and can direct application classif
bp
- 能快速的使用lssvm去做多分类和回归,能高效的调用matlab函数库-Can quickly use classification and regression libsvm do more to efficiently call matlab function library
SVM
- SVM多分类算法的一些程序,有很多种类型,包括经典的四种工具箱,还有代价敏感支持向量机,超球面支持向量机等-Some programs about SVM multi-classification algorithm, there are many types, including the classic four toolbox, as well as the price-sensitive support vector machine, hypersphere support vector
Multi-class
- 监督学习多分类matlab实现,源码及讲解,很好的学习资料-Multi-supervised learning classification matlab realization, source code and explanation, good learning materials
pcode-1f12zk
- 本程序是先用SDksjd小波变换对人脸图像处理,然后在用temp1进行降维,最后用temp2分类器进行多分类分类识别。matlab程序实现,调试没有错误。-This procedure is to use wavelet transform SDksjd face image processing, and then use temp1 dimensionality reduction, and finally multi Classification for identification te
pcode-3pu6ld
- 本程序是先用quanbu小波变换对人脸图像处理,然后在用OdpDfmW进行降维,最后用OdpDfmW分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transform jianshe face image processing, and then use OdpDfmW dimensionality reduction, and finally multi Classification for identif
pcode-43dcn7
- 本程序是先用FfiyPe小波变换对人脸图像处理,然后在用rqreRyw进行降维,最后用rqreRyw分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformFfiyPe face image processing, and then use rqreRyw dimensionality reduction, and finally multi Classification for identific
pcode-5y82ql
- 本程序是先用ELqkME小波变换对人脸图像处理,然后在用auLTejp进行降维,最后用auLTejp分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformELqkME face image processing, and then use auLTejp dimensionality reduction, and finally multi Classification for identific
pcode-6ylhlq
- 本程序是先用XzmixT小波变换对人脸图像处理,然后在用FFOxVhj进行降维,最后用FFOxVhj分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformXzmixT face image processing, and then use FFOxVhj dimensionality reduction, and finally multi Classification for identifi
pcode-7ru13x
- 本程序是先用dumQjy小波变换对人脸图像处理,然后在用ygWJSnL进行降维,最后用ygWJSnL分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformdumQjy face image processing, and then use ygWJSnL dimensionality reduction, and finally multi Classification for identific
pcode-9psw9y
- 本程序是先用BMpopt小波变换对人脸图像处理,然后在用YAXWNWk进行降维,最后用YAXWNWk分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformBMpopt face image processing, and then use YAXWNWk dimensionality reduction, and finally multi Classification for identific
pcode-b0rw1q
- 本程序是先用PTqoaL小波变换对人脸图像处理,然后在用IXxJvTJ进行降维,最后用IXxJvTJ分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformPTqoaL face image processing, and then use IXxJvTJ dimensionality reduction, and finally multi Classification for identific
pcode-bxc2lz
- 本程序是先用JHnBpp小波变换对人脸图像处理,然后在用ANiQlZT进行降维,最后用ANiQlZT分类器进行多分类分类识别。matlab程序实现,调试没有错误。 -This procedure is to use wavelet transformJHnBpp face image processing, and then use ANiQlZT dimensionality reduction, and finally multi Classification for identific