搜索资源列表
Bayes-Iris
- 根据贝叶斯原理设计的一个简单的分类器,利用已知样本数据训练后,分类器就可以对未知样本进行分类。(实验时采用的是Iris数据集。)-According to the design of a simple Bayesian classifier, using the known training sample data, the classifier can classify the unknown samples. (Experiments using the Iris data set.)
bayes-
- 贝叶斯分类器VC源代码(内附说明)-Bayesian classifier VC source code (with explanation)
PR
- 采用身高和体重数据作为特征,分别假设二者相关或不相关,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本-Bayes classifier is the most classic! Minimize the classification error. With the matlab language, with examples
PR1
- 采用身高和体重数据作为特征,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则.-Height and weight data used as the feature, under the assumption of normal distribution probability density estimation, establish Bayes minimum error rate classifier, written by the decision-mak
bayes
- 用matlab对基于最小错误率的Bayes分类器进行仿真,编写了相应的程序.-Using matlab based on the Bayes minimum error rate classifier simulation, the preparation of the corresponding program.
bayes-classsifier
- 该程序源码中包括了各种典型分布的二维数据的自动生成,二维概率密度函数的极大似然估计和窗函数估计,bayes分类器的设计和分类器错误率的多种方法估计-The program includes a variety of typical source distribution of the automatic generation of two-dimensional data, two-dimensional probability density function of the maximum l
Bayes
- 贝叶斯分类器的分类原理是通过某对象的先验概率,本文详细介绍贝叶斯分类器,使用贝叶斯分类器对样本进行训练分类,得到良好分类结果,并对分类结果进行分析。-Principle of Bayesian classifiers is through prior probability of an object, the paper describes Bayesian classifier, Bayesian classifier using the training sample classificat
Bayes-Classifier-Association-Rules
- 朴素贝叶斯分类是一种简单而高效的分类模型,然而条件独立性假设在现实中很少出,致使其性能有所下降。通过引入关联规则,从两方面来改善朴素贝叶斯分类的性能。一方面,通过对关联规则的挖掘,发现条件属性之间的关联关系,并且利用这种关联关系弱化朴素贝叶斯的独立性假设;另一方面,通过关联规则的置信度,给朴素贝叶斯加权。 -Naive Bayesian classifier is a simple and efficient classification model, the conditional indep
nbb
- this program is used for classification of noisy pixel identification by using naive bayes classifier
bayes-function
- python语言写的bayes分类器,自己写的,完全可用!-written in python language bayes classifier, write your own, completely free!
Minimum-Risk-Bayes-classifier
- 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从
Naive-Bayes
- Naive Bayes classifier Input: Training set and testing set, each row represents a instance, last column is label, begins from zero Output:predict label by Naive Bayes as well as its accuracy
Bayesian-based-classifier-design
- 基于贝叶斯的分类器设计.用“cancer.mat”的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试,从而加深对所学内容的理解和感性认识。-Based on the Bayes classifier. ' Cancer.mat data as the training sample set, the establishment of the Bayes classifier, the classifier is tested with the test sampl
Improved-Naive-Bayesian-classifier
- 对朴素贝叶斯算法的进一步改进。朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类性能的方法。为进一步的研究打下坚实的基础-Naive Bayes algorithm further improved. Naive Bayes classifier is a simple and efficient classifier, but its attr
Bayes-classifier-code
- 朴素贝叶斯分类器程序代码 采用朴素贝叶斯分类器算法,使用C++语言对英文文本进行分类,实现了一个文本分类器功能-Naive Bayesian classifier program code using Bayesian classification algorithm, using C++ language English text classification, to achieve a text classification function
Naive-Bayes-Text-Classification
- 使用Python实现朴素贝叶斯分类,文件夹中附带数据集。实现了NB算法,并进行5倍交叉验证-Naive Bayes classifier using the Python implementation, the folder with the data set. NB implements the algorithm, and 5-fold cross-validation
Bayes-classifier
- 贝叶斯分类器:贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。-Bayesian classifier
Bayes
- 朴素贝叶斯分类器,能实现高准确的分类,且速度快-Naive Bayes classifier, can achieve high accuracy of classification and fast
Naive-Bayesian-Classifier
- 基于matlab朴素贝叶斯分类,很好的例子-Naive Bayes classifier based on matlab,
bayes
- 用Python写的,基于概率论的分类方法,朴素贝叶斯分类器-Written in Python, based on probability theory classification, naive Bayes classifier