搜索资源列表
crank4
- Crank-Nicolson method in Numerical analysis, written in matlab
DM
- 对流扩散方程的四种差分解法,向前差分,向后差分,Crank-Nicolson格式和Du Fort-Frankel格式-Four Finite Difference Method convection-diffusion equation, the forward difference, backward difference, Crank-Nicolson scheme and Du Fort-Frankel format
incompressible_couette_crank
- 采用隐式克兰克-尼克尔森方法求解不可压库埃特流动-incompressible ouette crank nicolson
cnmethod
- 用Crank–Nicolson方法解一维空间中的抛物方程 偏微分方程数值解-Crank–Nicolson method solve Parabolic equations in one space variable
crank1
- 克兰克-尼科尔森方法求解库埃特流的fortran code-Crank- Nicolson Method for Solving Couette flow fortran code
一维扩散方程的有限差分法
- 一维扩散方程的有限差分法,采用了追逐法求解三对角矩阵,对一维扩散模型进行了分析,使用隐式六点差分格式(Crank-Nicolson)基本思想进行隐式差分。(The finite difference method of one-dimensional diffusion equation is used to solve the three diagonal matrix by chase method. The one-dimensional diffusion model is analyz
2_1-D_CFD_scheme_ver1.zip
- The solver was made to solve the convetive heat tranfer problem (2-D steady elliptic BVP). Not only several schemes, which are ADI, checkerboard, Crank-Nicolson, Gauss-Seidal with SOR but also exact solution are also present. You can implement and c
3_1-D_CFD_scheme_ver2.zip
- The solver was mdae to solve the teat tansfrer fields with cooling and hot zone. The Gauss-seidial, ADI, Laasonnen, and Crank-Nicolson schemes are present in the code. You can handle the method you want, iteration and the level of tolerance. The code
1_ques_crank
- crank nicolson maple software
cn
- 对流扩散问题的crank-nicolson差分格式求解(Solution of the Crank-Nicolson difference scheme for the convection diffusion problem)
imagtime3d
- 玻色爱因斯坦凝聚基于crank-nicolson方法的数值模拟,在简谐势阱下,双分量原子的相变情况(Bose-color Einstein Condensation Based on crank-nicolson numerical simulation, the phase transition of two-component atoms in a harmonic trap)
FractionalHeatConductionToolbox
- 分数阶热传导工具箱可以用于求解分数阶微分方程中的热传导过程的求解,包含解析解与数值解的求解方式,含有显式,隐式和Crank–Nicolson求解方法。(The methods of solving models of heat conduction are described, namely analytical and numerical methods. In the case of numerical methods regards the finite difference method
偏微分方程求解
- 本文研究下列定解问题(抛物型方程) 的有限差分法,其中 为正常数, 为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域 用两簇平行直线 分割成矩形网格,其中 分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson格式等。其中,Crank-Nicolson格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicol
zhuigan
- 求解三对角矩阵的时候可以用追赶法解方程组的解,文件为追赶法例程,附带Crank-Nicolson格式解对流方程算法(When solving tridiagonal matrix, we can use catch-up method to solve the solution of equations. The file is catch-up method routine, with crank Nicolson scheme to solve the convection equation
抛物型方程的Crank-Nicolson格式
- 可求解右端项为零的抛物型方程,边界条件为零。