
ISyE/Math/CS/Stat 525 – Linear Optimization
Spring 2020

Assignment 3

Due date: March 6 at 11:59pm.

Instructions and policy : This assignment contains two sections, one including mandatory exercises, and
one with optional exercises, that serve for extra-practice.

Undergraduate students should handle in only the mandatory exercises that are marked with [U].
Graduate students should handle in only the mandatory exercises that are marked with [G].

The assignments should be submitted electronically in Canvas. Late submission policy: 10% of total
points will be deducted per hour. IMPORTANT: Plan on submitting well before the deadline. If a technical
problem occurs, and you cannot resolve it by the deadline, send an email to the TA before the deadline and
attach your solution.

Students are strongly encouraged to work in groups of two on homework assignments. To find a partner
you can post on the “Discussions” section in Canvas. Only one file should be submitted for both group
members. In order to submit the assignment for your group please follow these steps in Canvas: Step 1.
Click on the “People” tab, then on “Assignment”, and join one of the available groups for the assignment;
Step 2. When also your partner has joined the same group, one of the two can submit the assignment
by clicking on the “Assignments” tab, then on the assignment to be submitted, and finally on “Submit
assignment”. The submission will count for everyone in your group.

Groups must work independently of each other, may not share answers with each other, and solutions
must not be copied from the internet or other sources. If improper collaboration is detected, all groups
involved will automatically receive a 0. Students must properly give credit to any outside resources they use
(such as books, papers, etc.). In doing these exercises, you must justify all of your answers and cite every
result that you use. You are not allowed to share any content of this assignment.

Compulsory exercises

Exercise 1 [U][G] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points
Consider the polyhedron P defined by the following system of 5 linear inequalities in 3 variables x1, x2, x3.

2x1 −5x2 +4x3 ≤ 10
3x1 −6x2 +3x3 ≤ 9
5x1 +10x2 −x3 ≤ 15
−x1 +5x2 −2x3 ≤ −7
−3x1 +2x2 +6x3 ≤ 12

Apply the Fourier-Motzkin elimination algorithm to P to compute Π1(P ) by eliminating first variable
x3 and then variable x2. Is P empty?

Exercise 2 [U] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points
Consider the standard form polyhedron P = {x ∈ Rn : Ax = b, x ≥ 0}, and assume that the rows of
the matrix A are linearly independent.

(a) (2 points) Suppose that two different bases lead to the same basic solution. Show that the basic
solution is degenerate.

(b) (2 points) Consider a degenerate basic solution. Is it true that it corresponds to two or more
distinct bases? Prove it or give a a counterexample.

Page 1 of 3



(c) (1 point) Suppose that a basic solution is degenerate. Is it true that there exists a distinct adjacent
basic solution which is degenerate? Prove it or give a a counterexample.

Exercise 3 [U][G] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 points
Let A1, . . . , An be a collection of vectors in Rm.

(a) (3 points) Let

C =

{
n∑

i=1

λiAi : λ1, . . . , λn ≥ 0

}
.

Show that if y ∈ C, then there exist coefficients λ1, . . . , λn ≥ 0 such that (i)at most m of the
coefficients are nonzero, and (ii) y =

∑n
i=1 λiAi.

Hint : Consider the polyhedron

Q =

{
(λ1, . . . , λn) ∈ Rn :

n∑
i=1

λiAi = y, λ1, . . . , λn ≥ 0

}
.

(b) (3 points) Let P be the convex hull of the vectors Ai, i.e.

P =

{
n∑

i=1

λiAi :

n∑
i=1

λi = 1, λ1, . . . , λn ≥ 0

}
.

Show that if y ∈ P , then there exist coefficients λ1, . . . , λn ≥ 0 with
∑n

i=1 λi = 1, such that (i) at
most m+ 1 of the coefficients are nonzero, and (ii) y =

∑n
i=1 λiAi.

Exercise 4 [G] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 points
Consider the polyhedron P = {x ∈ Rn : a′ix ≥ bi, i = 1, . . . ,m}. Suppose that u and v are distinct
basic feasible solutions that satisfy a′iu = a′iv = bi, i = 1, . . . , n − 1, and assume that the vectors
a1, . . . , an−1 are linearly independent (this implies that u and v are adjacent basic feasible solutions).
Let L = {λu+ (1− λ)v : 0 ≤ λ ≤ 1} be the segment that joins u and v. Prove that L = {z ∈ P : a′iz =
bi, i = 1, . . . , n− 1}. (Hint: Consider the one-dimensional set G = {z ∈ Rn : a′iz = bi, i = 1, . . . , n− 1}.)

Exercise 5 [U][G] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 points
Let P = {x ∈ R3 | x1 +x2 +x3 = 1, x ≥ 0} and consider the vector x = (0, 0, 1). Find the set of feasible
directions at x.

Exercise 6 [U][G] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 points
Consider the problem of minimizing c′x over a polyhedron P . Prove the following:

(a) (6 points) A feasible solution x is optimal if and only if c′d ≥ 0 for every feasible direction d at x.

(b) (2 points) A feasible solution x is the unique optimal solution if and only if c′d > 0 for every nonzero
feasible direction d at x.

Optional exercises

Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 points
We know that every linear program can be transformed into an equivalent linear program in standard
form. We also know that a nonempty polyhedron in standard form has at least one extreme point. We
are then tempted to conclude that every nonempty polyhedron has at leat one extreme point. What is
wrong with this argument?
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Exercise 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 points
Recall that a set S ⊂ Rn is said to be convex if for any x, y ∈ S, and any λ ∈ [0, 1], we have λx+(1−λ)y ∈
S.

Let f : Rn 7→ R be a convex function and let S ⊂ Rn be a convex set. Let x∗ be an element of S.
Suppose that x∗ is a local optimum for the problem of minimizing f(x) over S; that is, there exists some
ε > 0 such that f(x∗) ≤ f(x) for all x ∈ S for which ‖x− x∗‖ ≤ ε. Prove that x∗ is a global minimum;
that is, f(x∗) ≤ f(x) for all x ∈ S.

Exercise 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 points
Consider the set {x ∈ Rn | x1 = x2 = · · · = xn−1 = 0, 0 ≤ xn ≤ 1}. Could this be the feasible set of a
problem in standard form in Rn?
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