ISyE/Math/CS/Stat 525 — Linear Optimization
Spring 2020

Assignment 2

Due date: February 25 at 2pm.

Instructions and policy: This assignment contains two sections, one including mandatory exercises, and
one with optional exercises, that serve for extra-practice.

Undergraduate students should handle in only the mandatory exercises that are marked with [U].
Graduate students should handle in only the mandatory exercises that are marked with [G].

The assignments should be submitted electronically in Canvas. Late submission policy: 10% of total
points will be deducted per hour. IMPORTANT: Plan on submitting well before the deadline. If a technical
problem occurs, and you cannot resolve it by the deadline, send an email to the TA before the deadline and
attach your solution.

Students are strongly encouraged to work in groups of two on homework assignments. To find a partner
you can post on the “Discussions” section in Canvas. Only one file should be submitted for both group
members. In order to submit the assignment for your group please follow these steps in Canvas: Step 1.
Click on the “People” tab, then on “Assignment”, and join one of the available groups for the assignment;
Step 2. When also your partner has joined the same group, one of the two can submit the assignment
by clicking on the “Assignments” tab, then on the assignment to be submitted, and finally on “Submit
assignment”. The submission will count for everyone in your group.

Groups must work independently of each other, may not share answers with each other, and solutions
must not be copied from the internet or other sources. If improper collaboration is detected, all groups
involved will automatically receive a 0. Students must properly give credit to any outside resources they use
(such as books, papers, etc.). In doing these exercises, you must justify all of your answers and cite every
result that you use. You are not allowed to share any content of this assignment.

Mandatory exercises

ExXercise 1 [U] ottt ittt iinnseeennnseeennsseeennaseeens 4 points
Consider the problem of minimizing a cost function of the form ¢’z + f(d'x), subject to the linear
constraints Ax > b. Here, d is a given vector and the function f : R — R is described in the picture
below.

Provide a linear programming formulation of this problem.
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EXercise 2 [U[G] cuvunniiiittttttitiiiiiiiiiiieiiaeeeeeeeeeennunnnnsnseeeeaseeeees 6 points
Consider the following optimization problems involving absolute values. For each one, give an equivalent
linear program using similar ideas to the ones seen in class, and prove the equivalence.

(a) (2 points)

min — 2$1 + 3|132 - 10|
s.t. |I1 + 2| + |l‘2| <5

(b) (2 points)

max w1 — |2 + 3|
s.t. ‘Il‘ + X2 S 3
X9 Z 0

(¢) (2 points)

min || — |22 — 1]
s.t. 3x1+2x9>1
i) Z 1

EXercise 3 [U][G] cvvvuuniiiittttttitiitiiiiiiieaeeeeeeeeeeruunnnnnnseeeeaneeeees 5 points
Consider a road divided into n segments that is illuminated by m lamps. Let p; be the power of the
jth lamp. The illumination I; of the ith segment is assumed to be >27", a;;p;, where a;; are known
coeflicients. Let I be the desired illumination of segment i.

We are interested in choosing the lamp powers p; so that the illuminations I; are close to the desired
illuminations I}. Provide a reasonable linear programming formulation of this problem. Note that the
wording of the problem is loose and there is more than one possible formulation.

DS o =< P 8 points
Consider an optimization problem (P) with absolute values in the following form:

min dz+dy
st. Az+ By <b
and assume that all entries of B and d are nonnegative.

(a) (2 points) [U][G] Provide a linear programming reformulation of the above problem, using ideas
similar to the ones discussed in class.

(b) (4 points) [G] Show that the original problem and the reformulation are equivalent.

(¢) (2 points) [U][G] Provide an example to show that if B has negative entries, the problem may
have a local minimum that is not a global minimum.

EXercise 5 [U[G] c ittt tteeiiiititneeeeeeeeenns 6 points
Consider the polyhedron defined by the following system of linear inequalities:
- x1 4+ x2 4+ x3 4+ 2x4 — 225 = 1
3r1 + 2x9 + Tx3 — wxy 4+ 4dxs = 7
— 21 + 4x9 + 623 + 224 — T = 6
z > 0.

Consider the three vectors (1/2,1,1/2,0,0), (1,2,0,0,0) and (1,0,0,1,0). For each vector:
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(a) (3 points) Say if the vector is a basic solution and, if so, specify if the basic solution is degenerate
and determine all the bases associated to it.

(b) (3 points) Say if the vector is a vertex and, if so, determine an objective function that is uniquely
minimized at the vertex.

EXercise 6 [UJ[G] cvvuuuniiinttttttttiiiiiiiiiiiiiateteeeeeeeeruunnnnnnseeeaeneeeees 5 points
Let P be a bounded polyhedron in R™, let a be a vector in R™, and let b be some scalar. We define

Q={zeP|dz=0>}

Show that every extreme point of @ is either an extreme point of P or a convex combination of two
adjacent extreme points of P. Hint: Look at the proof of Theorem 2.6 (b) — (a) in the book. The idea
of this proof has been explained in class.

Optional exercises

=Y o 1T < A 0 points
A mapping f is called affine if it is of the form f(z) = Az + b, where A is a matrix and b is a vector.
Let P and @ be polyhedra in R™ and R™, respectively. We say that P and @ are isomorphic if there
exist affine mappings f : P — @ and ¢ : Q@ — P such that g(f(z)) =z for all z € P, and f(g(y)) =y
for all y € Q. (Intuitively, isomorphic polyhedra have the same shape.)

(a) If P and @ are isomorphic, show that there exists a one-to-one correspondence between their extreme
points. In particular, if f and g are as above, show that x is an extreme point of P if and only if
f(z) is an extreme point of Q.

(b) (Introducing slack variables leads to an isomorphic polyhedron) Let P = {z € R" | Az >
b, > 0}, where A is a matrix of dimensions k x n. Let Q = {(z,2) € R"™* | Az — 2z = b, z >
0, z > 0}. Show that P and @ are isomorphic.

D2 o 1= < T < TP 0 points
Consider the standard form polyhedron P = {z € R" | Az = b, x > 0}. Suppose that the matrix A, of
dimension m X n, has linearly independent rows, and that all basic feasible solutions are nondegenerate.
Let x be a vector in P that has exactly m positive components.

(a) Show that z is a basic feasible solution. Hint: Look at the proof of Theorem 2.6 (b) — (a) in the
book. The idea of the proof has been explained in class.

(b) Show that the result of part (a) is false if the nondegeneracy assumption is removed.
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