搜索资源列表
Cubic.java
- Cubic.java是JAVA经典游戏范例,适合初学者学习使用-Cubic.java game is JAVA classic example of learning to use for beginners
NumericalAnalysis
- 用JAVA编写的一个界面程序,实现了二分法、牛顿法、高斯法、SOR迭代法、三角分解法、三次样条插值曲线、曲线拟合的最小二乘法、数值积分Romberg算法、常微分方程的初值解法 改进Euler法、矩阵的特征值和特征向量 反幂法-An interface with a JAVA program written to achieve a dichotomy, Newton method, Gauss law, SOR iteration method, triangular decomposition
spline
- 三次样条插值,需要三次样条插值的可以下载这个包,也许对你有帮助-cubic spline curve
CubicSplineInterpolation
- Cubic Spline Interpolation
CubicSpline
- Cubic spline algorithm approximating function y=f(x) - ((-2)*x*(2*x+3))/(x*x+4*x+5) in interval [-2 2]-Cubic spline algorithm approximating function y=f(x)- ((-2)*x*(2*x+3))/(x*x+4*x+5) in interval [-2 2]
cubic
- 用两种方法实现贝赛尔曲线的画法。Java库函数和贝赛尔曲线原理公式画法,用这两种方法画一个小动物。-Two methods to achieve Bezier curve drawing method. Java library functions and principles of Bezier curve formula for painting, using these two methods to draw a small animals.
TestAlgorithm
- 求花朵数的JAVA代码实现 一个N位的十进制正整数,如果它的每个位上的数字的N次方的和等于这个数本身,则称其为花朵数。 例如: 当N=3时,153就满足条件,因为 1^3 + 5^3 + 3^3 = 153,这样的数字也被称为水仙花数(其中,“^”表示乘方,5^3表示5的3次方,也就是立方)。 当N=4时,1634满足条件,因为 1^4 + 6^4 + 3^4 + 4^4 = 1634。 当N=5时,92727满足条件。 实际上,对N的每个取值,可能有多个数字满足条件。
Spline
- 根据(0.0,0.0)(0.5,1.6)(1.0,2.0)(6.0,2.0)(7.0,1.5)(9.0,0.0)六个点使用三次样条差值求多项式并作图-According to (0.0,0.0) (0.5,1.6) (1.0,2.0) (6.0,2.0) (7.0,1.5) (9.0,0.0) using cubic spline six point margin and a polynomial mapping
capi
- Bspline曲线生成程序Catmull-Rom Spline, Lagrange, Natural Cubic Spline, and NURBS方法获得B样条曲线-Implementation of various mathematical curves that define themselves over a set of control points. The API is written in Java. The curves supported are: Bezier, B-Spl
LeastSquare20110722
- 1. 最小二乘法拟合数据成直线。 2. 三次样条插值。 3. 两个3D演示程序(用程序直接在平面上画的三维图像)。-自动翻译的:1 a linear least-squares fitting the data. 2 cubic spline interpolation. 3 two 3D demo program (application directly on the painting in three-dimensional image plane).
shuzhi
- 本压缩包内包含用java编写的最佳均方逼近算法和三次样条插值算法的源代码,以及课程设计的word版-In this archive contains java prepared by the best mean square approximation algorithm and cubic spline interpolation algorithm source code, as well as word version Course Design
capi1.01
- BSpline 及各种曲线Implementation of various mathematical curves that define themselves over a set of control points. The API is written in Java. The curves supported are: Bezier, B-Spline, Cardinal Spline, Catmull-Rom Spline, Lagrange, Natural Cubic Splin
