搜索资源列表
三角矩阵
- 在C++中用好的办法存储三角矩阵可以节省内存,提高运算效率-C used in a good way storage triangular matrix can save memory and improve computing efficiency
实验6 稀疏矩阵
- 利用三元组存储大规模稀疏矩阵并实现矩阵加减乘的运算。输入要求:三元组方式。运行环境C-mass sparse matrix storage and achieve matrix modified by the operator. Entry requirements : Triples way. C Runtime Environment
linsang
- 很多涉及图上操作的算法都是以图的遍历操作为基础的,此程序演示出图的遍历的过程。通过邻接矩阵存储结构实现数据俄的输入,实现图的深度优先遍历和广度优先遍历过程的演示,对异常输入信息报错。-map of algorithms are plans to traverse the basis for the operation, this procedure demonstrated map out the ergodic process. Through the adjacency matrix of
masm4
- 该程序用于用邻接矩阵存储图的结构,该程序用于用邻接矩阵存储图的结构-procedures for the use of adjacency matrix storage map structure, the procedures for the use of adjacency matrix structure of the storage plan
稀疏存储
- 稀疏矩阵的压缩存储-sparse matrix storage compression
MGraph
- 实现的是以邻接矩阵存储图,并能将矩阵打印,同时实现了图的深度遍历
bndcsr
- 稀疏矩阵存储格式转换,从带状矩阵(BND)到压缩稀疏行(CSR) .f90格式-BNDCSR converts Banded Linpack format to Compressed Sparse Row format.
LDL-2.0.1.tar
- 对基于稀疏矩阵存储技术的对称正定稀疏矩阵进行LDL分解,C++编写-LDL is a set of concise routines for factorizing symmetric positive-definite sparse matrices, with some applicability to symmetric indefinite matrices. Its primary purpose is to illustrate much of the basic theory of
matix
- VC++中使用的矩阵类模板,实现矩阵存储,转置等问题。-VC++ matrix class template used to achieve matrix storage, transpose and other issues.
gmres
- 大型稀疏矩阵的存储,用于方程组求解,可以直接调用,比较方便-Large-scale sparse matrix storage, for solving equations can be directly invoked, more convenient
SparseMatrixArithmeticUnit
- 现一个稀疏矩阵运算器。以“带行逻辑链接信息”的三元组表作为稀疏矩阵的存储结构;实现两个矩阵相加、相减、相乘运算;运算结果要求以阵列形式输出-Is a sparse matrix arithmetic unit. The " belt line of logical link information" triples table as sparse matrix storage structure to achieve two matrices are added togeth
graph
- 用类实现,图的邻接矩阵存储,图的深度周游与广度周游。-c++ realize a graph s store,and you can see the contents through two different ways .
photo
- 用关联矩阵存储图,并求其中权重之和,运行速度还不错-Correlation matrix memory map and requirements which weight and
tu
- (1)键盘输入数据,建立一个有向图的邻接表。 (2)输出该邻接表。 (3)建立一个无向图的十字链表。 (4)在有向图的邻接表的基础上计算各顶点的度,并输出。 (5)采用邻接表存储实现无向图的深度优先遍历。。 (6)采用邻接表存储实现无向图的广度优先遍历。 (7)以有向图的邻接表为基础实现并输出它的拓扑排序序列 (8)采用邻接矩阵存储实现无向图的最小生成树的PRIM算法。 (9)在主函数中设计一个简单的菜单,分别调试上述算法。-(1) keyboard input
text
- 给定N个顶点、E条边的图G,完成图的相关算法,具体要求如下: 1 完成图的创建方法,即从键盘或文件输入图的信息,建立图的邻接表或是邻接矩阵存储结构。 2 给出判定图的性质的算法,即能够判定图是否是有向图、无向图、有向无环图、连通图等。 3 根据输入的图的性质,实现以下算法(选择其中一两个): 如果图是有向无环图,则先实现图的某种遍历算法,在此基础上实现图的拓扑排序算法。 如果图是连通图,则求出图的最大生成树(不是最小生成树,参考讲授的方法),即得到的生成树权值之和最大
Dijkstra-example
- 用VC6.0开发的Dijkstra算法的三个应用实例,方法1中包含了图的生成和邻接表存储,方法2和三需要用户手动输入,用邻接矩阵存储-Dijkstra' s algorithm with VC6.0 developed three application examples, the method includes a graph adjacency table generation and storage, two and three methods require the user to
BO7-1
- 图的数组(邻接矩阵)存储(存储结构由c7-1.h定义)的基本操作(21个-Array (adjacency matrix) storage (storage structure defined by c7-1.h) Basic operation (Figure 21
zuixiaoshengchenshu
- 用c语言编写的实现用邻接矩阵存储,最小生成树普里姆算法,最小生成树克鲁斯卡尔算法 -With c languages using adjacency matrix storage, minimum spanning tree Primbetov algorithm, minimum spanning tree algorithm Kruskal
linjiejuzhen
- 使用邻接矩阵存储图并判断是否是欧拉图,最后打印图-Adjacency matrix storage map and determine whether it is Euler diagram, the final printing map
Array
- C++矩阵存储表示,数据的矩阵存放实现,程序小巧简便,通俗易懂(C++ matrix storage representation, data matrix storage implementation)
