搜索资源列表
svm_toolbox
- 支持向量机工具箱,其中包含MATLAB演示程序和一些基本的函数(计算核函数的函数、支持向量机训练函数和参数选择交叉验证函数等)。-SVM Toolbox, which contains MATLAB demo programs and some of the basic functions (Calculation Kernel function, SVM training function and parameter selection cross-validation functions,
svmmatlabSORCE
- 支撑矢量机 class CvSVM : public CvStatModel //继承自基类CvStatModel { public: // SVM type enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 } //SVC是SVM分类器,SVR是SVM回归 // SVM kernel type -class Support Vector Machine CvSVM
svm_perf.tar.gz
- SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping h: X --> Y using labeled training examples (x1,y1), ..., (xn,yn). Unlike regula
SVM_lzb1p0
- svm(支持向量机)能进行分类。有不同的核函数,如线性,多项式等-svm (support vector machine) can be classified. There are different kernel functions, such as linear, polynomial, etc.
SeveralrelativelynewSVMkernelfunctionandanumberofa
- 几篇较新的SVM文章核函数及多类问题lifeye1-Several relatively new SVM kernel function and a number of articles issues lifeye1
svm_perf
- SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping h: X --> Y using labeled training examples (x1,y1), ..., (xn,yn). Unlike reg
PolySVC
- Construct a non-linear SVM classifier with a polynomial kernel from the training Samples and Labels
codeFramework
- T. Joachims, Making Large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. Sch?lkopf and C. Burges and A. Smola (ed.), MIT Press, 1999.-T. Joachims, Making Large-Scale SVM Learning Practical. Advances in
GImpprovedSVVe
- 将遗传算法(GA)与传统SVM算法结合,构造出一种参数最优的进化SVM(GA2SVM),SVM 模型使用径向基函数(RBF))作为核函数,运用格雷码编码方式对SVM算法的模型参数进行遗传编码与优化搜索,,将搜索到的优化结果作为SVM 的最终模型参数。 -Genetic algorithm (GA) combined with the traditional SVM algorithm to construct a parameter of the evolution of the optim
PPSO-SVMfaceS
- 基于PSO训练SVM的人脸识别利用支持向量机在学习能力方面表现的良好性能,结合核主元分析特征提取方法,将将其应用于人脸识别中,该方法在实验中表现了良好的识别性能,为人脸识别领域提供了一条新的识别途径 已通过测试。 -Good performance, performance in the ability to learn the use of support vector machines based on PSO training SVM face recognition combined
SVM
- 用matlab的核函数对钓鱼岛实现分类(模式识别作业)-Kernel function using matlab realize the Diaoyu Islands classification (pattern recognition operations)
hehanshuSVM
- 基于核函数的SVM Kernel function of support vector machine based on-Kernel function of support vector machine based on
Combined-kernel-SVM
- 组合核支持向量机函数Combined kernel support vector machine function-Combined kernel support vector machine function
libsvm-3.18
- 使用支持向量机对数据进行非线性分类,通过修改核函数径向基函数的参数来做模型-Using support vector machine (SVM) to nonlinear classification of data, by modifying the parameter of kernel function of radial basis function model
SVM
- 為支持向量機之函式庫,可做分類應用,內部可選擇分類器的類型及核函數,對於學習支持向量機有很大的幫助-Support vector machines for the library, do classification applications, optional internal classification of the type and kernel function for support vector machine learning of great help
static_SVM_line_mean_var
- MATLAB代码,利用支持向量机SVM,核函数为线性核函数并进行参数寻优对数据进行分类-MATLAB code, the use of support vector machine SVM, kernel function is linear kernel parameter optimization and data classification
svm
- 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 2.熟悉基于libSVM二分类的一般流程与方法;-1. Master support vector machine (SVM) principles, and the type of kernel function kernel parameter selection principles 2. Familiar with the process-based approach libSVM two classifi
SVMcg
- LIBSVM的参数寻优,主要是自动计算惩罚系数和核函数中的gamma函数(The parameter optimization of LIBSVM is mainly to automatically calculate the penalty coefficient and the gamma function in the kernel function)
svmMLiA
- 基于最大间隔分割数据,SMO高效优化算法,在复杂数据上应用核函数(Partitioning data based on maximum separation, SMO efficient optimization algorithm, applying kernel functions to complex data)
多尺度
- 多尺度,小波核svm,有采集的数据,可做预测,适合学习(Multiscale Wavelet kernel svm, with collected data, can be used to predict, suitable for learning)
