搜索资源列表
Jacobi的迭代法
- 这个是雅克比迭代法的数值源代码,程序变得比较简单,但还需要完善-Jacques iterative method than the numerical code, the procedures are relatively simple, but needs to improve
jifen124
- 龙格---库塔方法是求解微分方程比较常用的方法,在理解数学上是怎么一回事后,编制这个程是相当容易的,就是个迭代的过程.步长的选取也是很有讲究的,过小的步长反而会导致误差累积过大. 相关的理论请参考相关的数值算法的书籍,我这里只给出关键的函数及主程序段,其余相关的细节就不再一一罗列了.-Runge - Kutta method to solve the differential equation is more commonly used method, in understanding h
ConsoleJava
- DotNet版的线性方程的解法,包括:高斯消元法,用于n阶非奇异矩阵;SVD分解法,求最小二乘解.目前还很难找到免费的DotNet版的数值计算程序.这里有源码(J#)和dll文件.-Kind version of the linear equation solution, including : Gaussian Elimination Act, for order n nonsingular matrix; SVD decomposition method, least squares sol
DotMatrix
- DotNet版的线性方程的解法,包括:高斯消元法,用于n阶非奇异矩阵;SVD分解法,求最小二乘解.目前还很难找到免费的DotNet版的数值计算程序.这里有源码(J#)和dll文件.-Kind version of the linear equation solution, including : Gaussian Elimination Act, for order n nonsingular matrix; SVD decomposition method, least squares sol
flyMachine
- 飞机运动轨迹模拟 使用龙格-库塔算法计算常微分方程数值解 并用图形显示运动轨迹 作者自己作业的源程序 欢迎讨论-aircraft trajectories simulated using the Runge - Kutta method to calculate the numerical solution of differential equations with graphics and movement track their authors trace the sour
BaseMath
- C#实现的基本数值算法:利用高斯消元法求线性方程组的解、利用约当消元法求线性方程组的解、一元非线性方程实根的数值算法及程序实现-C# implementation of basic numerical algorithms: Gaussian elimination method of solution of linear equations using Jordan Elimination Method of linear equations, one dollar real roots of
Jacobi
- 这里给出的是满阵形式存储的Jacobi法广义对称矩阵特征值计算的子程序代码,来自《 NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS(K. J. Bathe E. L. Wilson)》: -Here are the full array stored in the Jacobi method in generalized symmetric eigenvalue calculation of the subroutine code, from &q
BHcircle
- 数值微分(DDA)法: 设过端点P0(x0 ,y0)、P1(x1 ,y1)的直线段为L(P0 ,P1),则直线段L的斜率 L的起点P0的横坐标x0向L的终点P1的横坐标x1步进,取步长=1(个象素),用L的直线方程y=kx+b计算相应的y坐标,并取象素点(x,round(y))作为当前点的坐标。因为: yi+1 = kxi+1+b = k1xi+b+kDx = yi+kDx 所以,当Dx =1 yi+1 = yi+k。也就是说,当x
Seidel
- Method Gauss-SeidelIn C# Numerical Methods
Poiseuille_bouncback.rar
- 基于格子玻尔兹曼方法对泊肃叶流数值模拟,边界条件反弹格式,The Poiseuille flow numerical simulation, boundary conditions rebound format based on the Lattice Boltzmann Method
kongqiangliu.rar
- 基于格子波尔兹曼方法数值模拟了空腔流,边界条件使用外推法。,Numerical simulation based on the lattice Boltzmann method the cavity flow boundary conditions using the extrapolation.
NG_MTCL
- 数值积分求解,用来计算一维积分的蒙特卡洛法。-Numerical integration to calculate the one-dimensional integral Monte Carlo method
RATG2
- 计算二重积分的连分式法,用来计算数值积分的求解。-Continued fraction method to calculate the double integral to solving numerical integration.
SIMP
- 变步长Simpson求积法,用来求解数值积分。-Variable step size Simpson quadrature method used to solve numerical integration.
cSharpmatlabtaskcal
- 使用了编程语言:C#,编程工具:Visual Studio 2010实现了对数值计算中Steffensen,Muller(抛物线)非线性方程数值求解;Gauss线性方程组求解;Lagrange,Newton,三次样条插值法数值逼近的winform 软件开发,取代了Matlab方法,便于方法的应用和推广。-Use a programming language: C#, programming tools: Visual Studio 2010 realization of the numerica
SPH-3D
- SPH新型数值方法,作为下一代数值模拟的新方法,光滑粒子流体动力学(SPH)源程序,采用Fortran语言编写,用于计算可压缩流体力学问题-SPH model numerical method, as a new method for the next generation of numerical simulation, smooth particle hydrodynamics (SPH) source code, written using FORTRAN for calculation
numerical-computation
- 二分法,牛顿迭代法,割线法,梯形积分法和辛普森积分法在C语言程序设计实现-Dichotomie,Newton Iteration,Secant Method,trapezoidal integration and Simpson s rule in the C languare programing.
123
- 格子Boltzmann方法(Lattice Boltzmann Method, LBM)是近年来得到迅速发展并具有广阔应用前景的数值模拟方法。与基于连续介质假设的传统流体力学计算方法不同,LBM是从介观层次的流体粒子出发,基于动理学模型,假设这些流体粒子按规定的格线方向进行迁移碰撞相互作用,经过演化计算后得出符合物理规律的数值结果。与其它传统数值方法相比,LBM在复杂边界及几何条件、多相流模拟等方面具有明显的优势。并且LBM具有算法简单,容易编程实现的特点,非常适用于大规模并行计算。-Latti
gbxxm
- Normalized data model, modal vibration, For lack of EMD, Numerical solution of differential equations method.
