搜索资源列表
jiyuneirongdetuxiangjiansuo
- 基于内容的图像检索中的一些关键环节:特征提取:颜色直方图;纹理特征等 相似度:马氏距离,欧氏距离等 相关反馈:机器学习方法,如SVM,神经网络等 检索与分类:两个很相似的样本距离很小,虽然两个不相似的样本距离未必很大-content-based image retrieval of some of the key issues : Feature Extraction : color histogram; Texture characteristics of simila
nixianggongcheng
- 逆向工程的近景测量中的应用。主要研究点是图像的特征提取和匹配。-reverse engineering choppy measurement applications. Main point is the image feature extraction and matching.
face
- 人脸识别技术的几个主要研究方向,计算机人脸识别是指基于已知的人脸样本库,利用计算机分析图像和模式识别技术从静态或动态场景中,识别或验证一个或多个人脸。通常识别处理后可得到的基本信息包括人脸的位置、尺度和姿态信息。利用特征提取技术还可进一步抽取出更多的生物特征(如:种族、性别、年龄..) 。计算机人脸识别是目前一个非常活跃的研究课题,它可以广泛应用于保安系统、罪犯识别以及身份证明等重要场合。虽然人类对于人脸的识别能力很强,能够记住并辨识上千个不同的人脸,可是对于计算机则困难多了,其表现在:人脸表情
Researchon3DHumanMotionTrackingBasedonProbabilisti
- 本文提出了有模型指导的三维人体运动跟踪框架,将一个多关节的圆台形状三维人体模型与多个视频图像中的外轮廓、边界、灰度和肤色特征进行匹配,使人体运动跟踪变成一个状态估计问题。并且,使用基于概率模型的粒子滤波算法来完成非线性、非高斯动态系统的状态估计。
ResearchOnFacialExpressionRecognition
- 人脸表情识别是模式识别领域中一个非常活跃的研究方向。人脸表情识别包括:从背景图像中检测人脸 在视频中对人脸进行跟踪 提取表情特征 表情识别。本文在人脸表情识别的四个主要环节上均进行了研究工作。
FACERECOGNITIONBASEDONFRACTALANDGENETICALGORITHMS.
- 本文的题目是基于分形和遗传算法的人脸识别方法,对有限人群提出一种采用分形特征和遗传聚类的识别方法: 将图像分成很多小区域, 分别计算各个区域的分形特征, 以充分利用图像二维信息 同一个模式有多个样本, 通过遗传算法进行聚类以得到最优解实现不变性识别. 最后采用ORL 人脸图像库的一组图像对比了新方法、本征脸法和自联想神经网络方法, 结果表明该方法的识别率, 与本征脸法相似, 比自联想神经网络高.
huidu
- 灰度共生矩阵提取纹理特征可用于图像纹理特征提取-GLCM texture
