搜索资源列表
SIFT_VC opencv下的图像sift特征提取以及匹配跟踪识别
- opencv下的图像sift特征提取以及匹配跟踪识别-opencv image under sift recognition feature extraction and matching track
OrbTest
- ORB描述子,是比sift算法更加快速的图像特征点提取方法,检测的方法更加暴力。opencv已经实现。-ORB descr iptors, sift algorithm is faster than the image feature extraction methods, detection of the method is more violence. opencv has been achieved.
OpenCV-Mean-Shift-demo
- 基于OpenCV实现的图像特征区域跟踪程序,基于类Mean-Shift实现的颜色直方图概率匹配算法,可同时跟踪6个特定目标区域。-OpenCV implementation of image features based on regional tracking program, based on class Mean-Shift probability of achieving the color histogram matching algorithm, which can track a
opencv-shift-graphics-match
- opencv的shift图像匹配程序 实现了角点检测 特征点检测 图像匹配-opencv shift graphics match
SIFT2
- 基于opencv的SIFT图像特征跟踪程序,应用于视频序列中跟踪图像特征-Opencv-based SIFT feature tracking program, used to track image features in video sequences
Image-feature-extraction
- 图像特征点提取,需要安装opencv2.1-Image feature extraction, need to install opencv2.1
FaceRecog_src100902
- 基于OpenCV的人脸识别演示程序。目前实现了Gabor+Fisherface算法,还有几何和光照归一化。 -->请到 http://code.google.com/p/facerecog/ 下载最新版本。<-- 功能:对摄像头拍摄的或用户指定的图像,检测其中人脸,然后在已存储的人脸库中找到最匹配的人脸并显示。 在VS 2008 SP1上编写,使用了OpenCV 2.0和MFC,通过消息处理函数与用户进行交互,利用多线程来实时显示图像。 数据处理分为了C
find_obj
- surf 方法 直接能运行 配上opencv 图像特征点匹配 sift方法的改进版本,在时间上面大大提高同时在光照方面比sift要好很多-Methods can be run directly coupled surf opencv image feature point matching method sift improved version of the above at the time of greatly increased both the light much better th
Adative-contour-extraction
- 在图像中提取轮廓(用到了自适应阈值分割算法),根据目标特征,如周长、面积等参数进行筛选,得到目标的轮廓。-Contour extraction in the image (use an adaptive thresholding algorithm), depending on the target characteristics, such as perimeter, area and other parameters of screening, target profile.
opencv_FeatureDetect_Test
- 这个是在刚学opencv时候的测试小代码。主要是图像特征提取方面的。同时,里面含有自编了canny、角点检测还有一些其他。里面每个文件均可以单独运行在VS20101平台下。(opencv2.1)-This is just a test when a small learning opencv code. The main aspects of the image feature extraction. At the same time, which includes self-compiled
motion-tracking-and-implementation
- 目标跟踪是计算机视觉的一个重要分支,日益广泛应用于科学技术、国防安全、航空、医药卫生以及国民经济等领域。实现目标跟踪的关键在于完整地分割目标、合理提取特征和准确地识别目标,同时,要考虑算法实现的时间,以保证实时性。当视频图像中被跟踪目标发生姿态变化,存在旋转或部分遮挡时,简单的灰度模板或者Hausdorff距离匹配一般很难达到实时跟踪目标的要求,出现误匹配或者跟踪丢失的情况,而且跟踪效率较低。Gary R.Bradski提出的CAMSHIFT[1](Continu-ously Adaptive
optical-flow-algorithm-simulation-
- 提出一种基于OpenCV图像库的运动目标处理算法仿真方法,介绍了OpenCV库的特点和VC6环境下的配置,通过调用库中的视频读写函数、图像特征计算和光流计算函数,得到运动目标的光流场,为运动目标状态分析和跟踪提供了基础,仅在-OpenCV-based optical flow algorithm simulation exercise goals
opencv
- opencv 实现双目立体视觉的标定,图像特征匹配,测距工能。-opencv calibration to achieve binocular stereo vision, image feature matching, distance work can be.
OpenCV_VC6.0_surf
- Visual C++ 6.0平台基于OpenCV的SURF图像特征点的检测和匹配源代码,能正确的实现图像特征点的检测和匹配功能,对研究图像特征点匹配非常有帮助。-The Visual C++ 6.0 platform is based on OpenCV SURF image feature points detection and matching of source code, can correct the image feature point detection and matchin
canny-jiance
- 对图像边缘检测,实现对图像特征的提取,对图像处理的下步工作做准备-Image edge detection
sift2
- sift算法,VC++ 6.0 开发,用于图像特征点提取,利用Opencv库进行开发-sift algorithm, VC++ 6.0 to develop for the image feature point extraction, Opencv library development
code1
- 特征点提取及图像匹配,局部图像特征提取匹配(Feature point extraction and image matching, local image feature extraction matching.)
quickly match
- 基于亮度/色彩一致性,在SURF算法的基础上提出了一种快速图像特征点匹配算法,可以缩小特征点匹配所需的运行时间,提高正确匹配率。(Based on the brightness / color consistency, a fast image feature point matching algorithm based on SURF algorithm is proposed, which can reduce the running time of feature point matchi
特征检测
- 图像特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。包括:Harris角点、ShiTomasi角点、亚像素级角点、SURF角点、Star关键点、FAST关键点、Lepetit关键点等等(Image feature extraction is a concept in computer vision and image processing. It refers to using a computer to extract imag
SURF探测器拼接两张图像以创建全景的openCV实现
- 基于SURF的图像拼接,全景图像筛选特征点,进行匹配刷选转换(Image mosaic based on SURF panoramic image filtering feature points matching selection switch)
