搜索资源列表
-
10下载:
这时一个语音特征提取的程序源码,除了包含矩阵运算和矢量运算外,还包含了很多语音特征的提取算法,包括:共振峰(formant)提取、基音(pitch)提取、端点(endpoint)检测、线性预测系数(LPCC)、MFCC、LSF、PLCC、EPOCH等。这是我见到的最全的语音分析源码,推荐!-Then a voice feature extraction procedures source, in addition to containing matrix and vector operation
-
-
0下载:
FastICA算法,用于信号的独立分量分析,在ICA的基础上加快了收敛速度,有更高的效率!并且增加了图象界面,使用方便!-FastICA algorithm, the signal for an independent component analysis, at the ICA on the basis of accelerating the convergence rate, a more efficient! And to increase the image user interface
-
-
1下载:
此算法是针对语音合成,采用时域的基音同步叠加算法,对波形进行韵律特征提取,修改,以及合成(包括短时能量分析,短时过零率分析等等算法)!算法是用matlab编写的-Speech synthesis, using time-domain synchronous Pitch stack algorithm, rhythm right waveform feature extraction, modification, and synthesis (including short-term energy
-
-
0下载:
基本lms算法的分析研究与方针 是硕士论文 发表于中国学术刊物-basic algorithm research and policy analysis of the master's thesis published in academic journals in China
-
-
0下载:
构造一组被噪声污染的方波或三角波数据,试选取适当的FIR滤波器结构和参数,分别应用LMS,DFT/LMS和DCT/LMS算法来实现自适应滤波器,对改组数据进行滤波,并分析仿真结果。-Construction Group was one of the Noise Pollution square or triangular wave data, Examination choose appropriate FIR filter structure and parameters, applicat
-
-
0下载:
FASTICA - Fast Independent Component Analysis
%
% FastICA for Matlab 7.x and 6.x
% Version 2.5, October 19 2005
% Copyright (c) Hugo G鋠ert, Jarmo Hurri, Jaakko S鋜el� and Aapo Hyv鋜inen.
%
% FASTICA(mixedsig) estimates the independent
-
-
0下载:
Based on short-term energy detection and short-term cross zero rates detection in speech
reorganization,the paper presents two-threshold endpoint detection.In addition,an accurate speech
segmentation algorithm is achieved with the wavelet transfo
-
-
0下载:
基于语音频谱分析的重要性以及众多端点检测的算法以示其重要性,Based on the importance of voice spectrum analysis and the various endpoint detection algorithm to show its importance
-
-
1下载:
本 文 首先 介绍了语音识别的研究和发展状况,然后循着语音识别系统的
处理过程,介绍了语音识别的各个步骤,并对每个步骤可用的几种方法在实
验基础上进行了分析对比。研究了语音信号的预处理和特征参数提取,包括
语音信号的数字化、分帧加窗、预加重滤波、端点检测及时域特征向量和变
换域特征向量.其中端点检测采用双门限法.通过实验比对特征参数的选取,
采用12阶线性预测倒谱系数作为识别参数。详细分析了特定人孤立词识别算
法,选定动态时间弯折为识别算法,并重点介绍其设计实现。
在
-
-
0下载:
AMUSE,独立成分分析(ICA)算法之一,用于混合语音信号的盲分离-AMUSE, algorithm of independent component analysis, used in blind speech signal separation.
-
-
0下载:
为了实现高速语音特征参数的提取,在分析了美尔频率倒谱特征参数提取算法的基础上,提出了算法的硬件
设计方案,介绍了各模块的设计原理。该方案增加了语音激活检测功能,可对语音信号中的噪音帧进行检测,提高了特征参
数的可靠性。-In order to achieve high-speed voice characteristic parameter extraction, in the analysis of Mel frequency cepstral feature extraction a
-
-
0下载:
Levison-Durbin 语音信号处理中的线性预测编码LPC 理论、格型滤波器以及求解现行预
测方程的算法,可以实现对语音信号重要元素的分析、合成甚至识别。
基于现有的实验平台,我们可以利用 Matlab 函数来获得几个固定语音元素(如元音)
的模型系数,LPC 得到的系数组成 IIR 滤波器。利用冲击脉冲
序列作为输入,我们就可以得到原来的语音。这是一种简单的语音合成功能。-Levison-Durbin speech signal processing in li
-
-
1下载:
基于ICA的独立分量分析,目标函数是负熵,快速不动点算法-ICA-based independent component analysis, the objective function is negative entropy, fast fixed-point algorithm
-
-
1下载:
基于负熵的FASTICA的不动点算法,并行提取信号,独立分量分析-Based on negative entropy FASTICA the fixed point algorithm, parallel extract the signal, independent component analysis
-
-
0下载:
基于最大似然估计的独立分量分析算法,包括随机梯度算法,相对梯度算法,快速不动点算法3个程序-Based on maximum likelihood estimation of independent component analysis algorithms, including stochastic gradient algorithm, the relative gradient algorithm, fast fixed-point algorithm for three programs
-
-
0下载:
噪声环境下的端点检测在语音信号分析和识别中占有重要地位。文中将分形理论中的分形记盒维数应用到端点检测算法中,采用了基于分形记盒维数与短时能零比相结合的端点检测算法,以分形记盒维数为主要判决条件,并在判决门限的设定上采用了自适应机制。-Noise environment endpoint detection in speech signal analysis and identification play an important role. Wen will be fractal theory
-
-
0下载:
在分析语音特征提取方法基础上提出一种改进组合算法,并采用HMM 声学模型和Viterbi 算法进行模式训练和识别.-Speech feature extraction method in the analysis based on the combination of an improved algorithm, and using HMM acoustic model and the Viterbi algorithm for model training and recognition.
-
-
0下载:
Fetal electrocardiogram (fetal ECG) extraction is an interesting as well as a difficult problem in signal processing. This forms one important application of Independent Component Analysis (ICA) or Blind Source Separation (BSS),
-
-
1下载:
基于统计特征的语种识别算法分析与实现。1.提取语音的客观统计特征;2、通过分类器建立训练学习模型;3、将模型运用于汉语、英语、日语等语种识别实验,与人的主观感觉做对比-Based on statistical language identification algorithm analysis and Realization of objective statistics. The extraction of speech features 2, the classifier built th
-
-
0下载:
The number of states in GMM as the generative model of the frames is obtained using
k-means algorithm. This also helps to initialize the mean vector and the covariance
matrix of the individual state of the GMM. The training LPC frames collected fro
-