搜索资源列表
Video_Image_Segmentation_Based
- 为了对光线变化的图像进行顺利侵害,提出了一 种利用贝叶斯学习方法来进行视频图像分割的算法,印先在每个像素点处对不断变化的背景建模,同时计算每个像素点 处的颜色直方图,再用这些直方图来表示该像素点处特征向量的概率分布,然后用贝叶斯学习方法来进行判断,以确定在光线缓慢或者突然变化的时候,每个像素点是属于前景还是属于背景。-In order to change the image of light against a smooth, a Bayesian learning approach t
2
- 多特征信息融合的贝叶斯网络故障诊断方法研究-Multi-feature information fusion fault diagnosis method of Bayesian networks
A-Bayesian-Approach
- In this paper, we propose a Bayesian methodology for receiver function analysis, a key tool in determining the deep structure of the Earth’s crust.We exploit the assumption of sparsity for receiver functions to develop a Bayesian deconvolution
Fergus-Perona
- We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for al
DataMining3rd
- 评测数据在去掉停用词的 分类过程开放测试中,引入Good-Turing算法的分类性能比Laplace原则提高了3·05 ,比Lidstone方法提高 1·00 .而在交叉熵选择特征词的算法中,增加Good-Turing的贝叶斯分类方法可比最大熵分类性能高95 .通过这种数据平滑的算法,有助于克服因数据稀疏而引发的特征词缺失问题 -Evaluation data in the open test of the classification process to remove stop
bayesian-approximiation
- 贝叶斯估计近似计算方法的技术描述文档,讲解贝叶斯近似估计理论与方法-Bayesian estimation of the approximate calculation method of the technology described in the document, explaining Bayesian the approximate estimation theory and methods
Short-duration-power_CS
- 根据压缩传感(Compressed Sensing,cs)N论,首次提出了短时电能质量扰动信号的压缩采样方法,该方法突破了奈奎斯特采样频率的限制,实现了低于奈奎斯特采样频率的低速率采样。文中对比分析了CS理论与传统采样理论,研究了cS短时电能质量信号压缩采样的实现方法,包括:测量矩阵的构建、稀疏基的选取和电能质量信号快速贝叶斯匹配追踪重构算法(FBMP)-Compressed sensing ( Compressed Sensing , cs ) N theory , first propose
Image-reconstruction_CS
- 合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法。该方法将cS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型巾的未知权值参数;利用sBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数- Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image recon
05277231
- Development of the Facial Feature Extraction and Emotion Recognition Method based on ASM and Bayesian Network
afnichidnfs-
- 对五种典型的贝叶斯网分类器进行了分析与比较。在总结各种分类器的基础上,对它们进行了实验比较,讨论了各自的特点,提出了一种针对不同应用对象挑选贝叶斯网分类器的方法。 -Of five kinds of typical bayesian network classifiers are analyzed and compared. On the basis of summarizing the various classifiers, experiments have been carried out
classificiation-algorithm-overview
- 机器学习领域经典分类算法综述,包括Decision Tree(ID3、C4.5(C5.0)、CART、PUBLIC、SLIQ和SPRINT算法),三种典型贝叶斯分类器(朴素贝叶斯算法、TAN算法、贝叶斯网络分类器),k-近邻 、 基于数据库技术的分类算法( MIND算法、GAC-RDB算法),基于关联规则(CBA:Classification Based on Association Rule)的分类(Apriori算法),支持向量机分类,基于软计算的分类方法(粗糙集(rough set)、遗传
Sparsity-Inducing-DOA
- 基于稀疏分解的宽带信号DOA估计方法,使用了基于贝叶斯的方法具有良好的估计精度和分辨率-Wideband signal sparse decomposition DOA estimation method based on the use of a method based on Bayesian estimation has good accuracy and resolution
Bayesian-Vector-Autoregression-using-Bayesian-est
- Bayesian Vector Autoregression using Bayesian estimation method
Mixture-model-ICM-Bayesian
- A MIXTURE-SITE MODEL FOR EDGE-PRESERVING IMAGE RESTORATION USING BAYESIAN METHOD
Bayesian_Statistical_Methods
- 一本贝叶斯方法入门级别的书,内容详尽,简单易懂,适合初学者使用-An introduction of bayesian network, very useful when you are interested in this method
A-Robust-Algorithm-for-Joint-Sparse
- 脉冲噪声背景下的联合稀疏恢复方法, 在不同背景下给出了测试结果-presents a robust solution for joint sparse recovery (JSR) under impulsive noise. The unknown measurement noise is endowed with the Student-t distribution, then a novel Bayesian probabilistic model is proposed to
beng_bk40
- 利用贝叶斯原理估计混合logit模型的参数,人脸识别中的光照处理方法,大学数值分析算法。- Bayesian parameter estimation principle mixed logit model, Face Recognition light treatment method, University of numerical analysis algorithms.
vb686
- 比较了软阈值,硬阈值及当今各种阈值计算方法,包括主成分分析、因子分析、贝叶斯分析,cordic算法的matlab仿真。- Comparison of soft threshold and hard threshold and today various threshold calculation method, Including principal component analysis, factor analysis, Bayesian analysis, cordic matlab sim
0402
- 利用贝叶斯原理估计混合logit模型的参数,用平面波展开法计算二维声子晶体带隙,具有丰富的参数选项。- Bayesian parameter estimation principle mixed logit model, Computation Method D phononic bandgap plane wave, It has a wealth of parameter options.
2012.李航.统计学习方法
- 《统计学习方法》是计算机及其应用领域的一门重要的学科。《统计学习方法》全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文
