搜索资源列表
SRC
- sparse representation algorithm
When_is_missing_data_recoverable
- 详细介绍了图像稀疏分解思想在数据修复方面的应用。给出了较为详细的理论依据,以及简单的实例介绍-Details of the image sparse decomposition ideas in the application of data recovery. Gives a more detailed theoretical basis, as well as a simple example to illustrate
MatchingPursuits
- Matching Pursuit方法,经典的稀疏表示方法,可以用人脸识别和图像分类,图像去噪,现在非常流行。-Matching Pursuit method, sparse representation of the classic, you can use face recognition and image classification, image denoising, now very popular.
imagematchingpursuitbasedonGabordictionatry
- 基于Gabor感知多成份字典,进而提出一种高效的基于匹配追踪的图像稀疏分解算法,很有参考价值!-An effective algorithm based on the matching pursuit method is posed to obtain sparse decomposition of image with Gabor dictionary!
spgl1-1.7
- spgl1的最新版本1.7,用于图像处理中的大规模稀疏重建。-spgl1 the latest version 1.7, for image processing of large-scale sparse reconstruction.
A_simple_method_to_steoro_match
- 汽车防撞,技术路径不外:1.雷达测距防撞;2.视差测距防撞。前者,一旦保有量较大,必定遭遇互相干扰问题;后者,以前主要问题是,算法复杂,实时性差。 本文公开了一种新算法(已申请发明专利),主要运算可以借助硬件组合逻辑模块并行执行,可以极大提高视差测距的实时性,满足汽车防撞的要求。-(Background) Stereo matching, requires in two images to identify two pixels to be matched each other, i
Simulation-visual-mechanism
- 提出一个小波域多尺度马尔柯夫随机场模型用于模拟视觉系统在图像分割中的若干功能。针对人类视觉系统具有特征检测器、等级层次性、双向连续性、学习机制等功能,对输入场景,该模型用小波变换提供该场景图像的稀疏表示,模拟特征检测器功能 用金字塔结构模拟等级层次性 用两类信息流模拟双向连接性,分别刻画自底向上的输入图像特征提取过程以及自顶向下的反馈过程 用迭代过程模拟学习机制 采用多尺度马尔柯夫随机场模型实现图像分割。-Put forward a wavelet domain multi-scale mark
KSVD_Matlab_ToolBox
- 数字图像处理,K-SVD字典学习方法,信号的稀疏与冗余表示理论,图像压缩,图像去噪-Digital image processing, K-SVD dictionary learning methods, sparse and redundant signal representation theory, image compression, image denoising
CVPR-ScSPM
- Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification
Image-reconstruction_CS
- 合稀疏贝叶斯学习(SBL)和可压缩传感理论(CS),给出一种在噪声测量条件下重建可压缩图像的方法。该方法将cS理论中图像重建过程看作一个线性回归问题,而待重建的图像是该回归模型巾的未知权值参数;利用sBL方法对权值赋予确定的先验条件概率分布用以限制模型的复杂度,并引入超参数- Hop sparse Bayesian learning ( SBL ) and compressible sensing theory ( CS ) , give a compressible image recon
SparseRepresentationaItsApplication
- 稀疏表达及其应用的简单介绍,其中涵盖了稀疏表示、特征提取、压缩感知、图像增强、盲源分离、模式分类、目标跟踪和图像超分辨等。PPT和PDF是对应的,并添加了可视化的结果。-Sparse Representation and Its Application: Compressive Sensing, Visual Feature, Image Enhancement, Blind Source Separation, Pattern Classification, Object Tracking a
ND-Flevoland_label
- 快速稀疏svm算法实现图像分类,有需要者可以共同讨论-Fast sparse svm algorithm for image classification, there are those who need to discuss
Introduction-Compressed-Sensing
- 压缩感知(CS)理论是在已知信号具有稀疏性或可压缩性的条件下,对信号数据进行采集、 编解码的新理论。主要阐述了CS理论框架以及信号稀疏表示、CS编解码模型,并举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 -Compressed Sensing(CS) theory is a novel data collection and coding theory under the condition that signal is sparse or compress
ELM-and-SRC
- A hybrid approach combining extreme learning machine and sparse representation for image classification
Fingerprint-Compression
- A new fingerprint compression algorithm based on sparse representation is introduced. Obtaining an overcomplete dictionary from a set of fingerprint patches allows us to represent them as a sparse linear combination of dictionary atoms. In th
Image-Sparse-Representation-Model
- 完备图像稀疏表示是一种最新的图像表示模型,采用过完备字典中原子的线性组合形式实现图像的稀疏表示.传统 的过完备图像稀疏表示模型采用重建误差的平方和作为保真项.该保真项没有充分考虑到人眼对图像的感知特性,无法度量图 像中边缘、轮廓、纹理等局部几何结构的变化.本文基于过完备稀疏表示理论思想,建立了新的稀疏性正则化的图像稀疏表示模 型.模型中的正则项约束图像表示系数的稀疏性,保真项采用更符合视觉感知的结构相似性度量.基于正交匹配追踪算法,提出 了基于结构相似度的正交匹配追踪算法.实验结
KSVD_Color_IEEE_TIP
- 图像稀疏表示近来比较流行!本文是一篇基于k-svd方法变换的快速方法的经典文章!-Image sparse representation of the more popular lately! This article is based on a quick way to change the method of k-svd classic article!
paper1
- 基于Gabor特征和字典学习的高斯混合稀疏表示图像识别-Image recognition based on Gabor features and dictionary learning of Gauss hybrid sparse representation
Image-Denoising-by-Sparse-3-D
- BM3D 的经典文章,是去噪领域的很经典的一篇文章,有着良好的去噪效果。-BM3D classic article, is a very classic in the field of denoising of an article, has a good denoising effect.
