搜索资源列表
Text-Retrieval
- 信息检索系统从最初的纯手工检索系统业已发展到现在的以信息技术为支撑的检索系统,在这一过程中,适应新的信息资源、信息技术这些检索环境,提高信息检索系统的查全率、查准率和系统响应时间是不变的主题,在众多文本中掌握最有效的信息始终是信息处理的一大目标。围绕向量空间模型设计了一个文本检索系统,介绍向量空间模型的基础上给出了基于它的信息检索系统的一般结构框架和各部分的功能,探讨了系统中所涉及到的关键技术。用向量空间模型进行特征表达,用TF-IDF(Term-Frequency Inverse-Docume
law-of-cosines
- Lucene中的评分机制,也是算一个相似度的问题,不过它采用的是计算向量间的夹角(余弦公式),在google黑板报中的:数学之美(余弦定理和新闻分类) 也有说明,可以通过余弦定理来判断相似度;于是决定自己动手试试。-Scoring mechanism in Lucene, also calculate a similarity problem, but it USES is the Angle between the vectors (cosine formula), in the Google
a
- 一种基于HSV空间的颜色相似度计算方法,根据hsv的计算方法来计算图像中的颜色。-HSV color space based on the similarity calculation method, based on the calculation method to calculate hsv colors in the image.
note
- 我的读书笔记(一):数据信息中的相似度计算算法-My reading notes (a): The data information similarity calculation algorithm
fast-template-matching
- 本文提出一种基于图像边缘几何特征的快速模板匹配算法。算法利用边缘 点的位置和梯度方向作为匹配信息进行相似度计算。可以很好的避免因图像明 暗变化、光照不均匀、旋转所带来的影响,且对于部分遮挡的情况,亦可以得 到良好的匹配结果。为了得到边缘点坐标和梯度方向,本文根据曲面拟合原理, 通过平移变换,推导出精确梯度方向和亚像素边缘坐标的快速算法。既加快了 算法的处理速度,也是匹配算法高精度的前提保证。为了使匹配算法满足实时 性要求,主要采用阈值判断和图像金字塔算法的搜索策略。在阈值
DBSCAN
- dbscan聚类考虑特征相似度的具有噪声的基于密度的聚类(DBSCAN)改进算法. 其次,基于各类参数向量簇的各属性最大相似系数,计算获得各类参数向量簇的典型特征向量. 然后,基于各类的典型 特征向量,针对聚类结果中的噪声簇,提出了基于离群系数的可疑不良数据分布模型 在此基础上,结合分布规律,提出了基于可疑度的不良参数判别方法. 最后,通过实际算例验证了所述模型与方法的有效性.-Dbscan u806A u8003 u8651 u7279 u5F1 u7F8 u4F3C u5
