搜索资源列表
pingpufenxi
- 对语音信号的频谱分析的程序,用于提取参数来进行分析或者合成。-right voice signal spectrum analysis of the procedures used to extract parameters for analysis, or synthesis.
111
- 录制一段个人的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用双线性变换法和窗函数法设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;最后,设计一个信号处理系统界面。-Record a personal voice signal, and recording the signal is sampled draw sampled
modelbasedonspectrumprediction
- 文章展示了基于高斯混合模型的语音频谱预测方法。频谱预测可能在传包过程中预防丢包这方面起到大作用。期望最大化算法用两倍或三倍的连续语音因素来测试模型。模型被用来设计第一,儿等指令预测量。预测表用频谱分配状态来估计并和一个简单的参考模型对比。最好的预测表得到一个平均频率扭曲值是0.46dB小于参考模型-This paper presents methods for speech spectrum prediction based on Gaussian mixture models. Spec
matlabfangzhen
- 周期信号频谱分析,数字滤波器设计,语音信号的处理-Spectral analysis of periodic signals, the digital filter design, and the processing of the speech signal
cepstrum_computation
- 劳伦斯教授(罗格斯大学和加州大学圣巴巴拉分校),罗纳德·谢弗教授(斯坦福大学)的团队已经设计了的关于语音信号倒频谱分析的程序,适用,有创新点,里面有很好地注释资料。-The set of speech processing exercises have been designed by a team consisting of Prof. Lawrence Rabiner (Rutgers University and University of California, Santa Barbar
mfcc
- 在语音辨识(Speech Recognition)和语者辨识(Speaker Recognition)方面,最常用到的语音特征就是「梅尔倒频谱系数」(Mel-scale Frequency Cepstral Coefficients,简称MFCC),此参数考虑到人耳对不同频率的感受程度,因此特别适合用在语音辨识。
voice-signal-acquisition
- 语音信号采集与频谱分析设计,硬件系统设计,软件编程-Voice signal acquisition and spectral analysis and design, hardware design, software programming
112121
- 语音信号的频谱分析 利用FIR数字滤波器对语音信号进行滤波 语音信号处理初步-回声估计和回声消除 数字图像处理算法初步-Spectral analysis of speech signal Using FIR digital filter to filter the speech signal Processing of speech signal initial echo estimation and echo cancellation Digital image pr
ShowFrequency
- 采用Matlab仿真,实时对麦克风话筒进行语音采集,并进行实时时域和频域分析,描绘频谱图和时域图形。-Using Matlab simulation, real microphone microphone for voice capture, and real-time domain and frequency domain analysis, spectral and temporal depicting graphic.
vw837
- 对信号进行频谱分析及滤波,语音信号的采集与处理,数字信号处理课设,有循环检测,周期性检测。- The signal spectral analysis and filtering, Acquisition and Processing of the speech signal, digital signal processing class-based, There are cycle detection, periodic testing.
