搜索资源列表
Intelligentapplicationofthealgorithms
- 智能化算法的应用,介绍了各种智能算法的概况,详细介绍了蚁群算法、免疫算法、遗传算法、粒子群算法在配电网重构中的应用,可以管中窥豹地学习智能算法在具体问题中的应用-The application of intelligent algorithms, introduced an overview of the various intelligent algorithms, detailed information on ant colony algorithm, immune algorithm,
gaijindeliziqunyouhuasuanfa
- 改进的粒子群优化算法在机器人足球中的应用 希望能对研究机器人足球的相关朋友有所帮助-Improved Particle Swarm Optimization Application in Robot Soccer Robot Soccer would like to study the relevant help a friend
Particle_Swarm_Optimization
- It is a book for swarm optimization and it contains various topics solved by swarm optimizationt techniques
RLSexample
- Particle swarm optimization has been used to solve many optimization problems since it was proposed by Kennedy and Eberhart in 1995 [4]. After that, they published one book [9] and several papers on this topic [5][7][13][15], one of which did a s
1_2
- 某些实际问题的优化目标是求所有的局部最优解,即求解多峰寻优问题,为了求解多峰优化问题,提出了改造的微粒 群优化算法.尽量减少微粒群算法中的全局因素,从而增大其局部因素,同时采用变步长方法增加微粒的多样性.并给出了该算法 的原理和步骤.仿真实验表明该算法概念清楚,计算简单,具有很好的局部寻优特性,可应用求解于多峰寻优问题.另外还给出了几 个运算实例和与其它优化算法的比较-Some of the practical problems of optimization goal is
214545535242
- 基于混沌序列的多峰函数微粒群寻优算法的目标就是找到多峰函数的所有局部优化峰值。在分析微粒群优化 算法中各个参数对微粒运动影响的基础上,对微粒群算法进行改造,让微粒运动从初始位置沿优化函数曲线向优化峰值 方向爬行.直至找到所在区域的局部优化峰值;要想求得尽可能多的局部优化峰值,就要求微粒群中微粒的初始位置分 布具有随机性和遍历性。为此采用混沌序列设置微粒初始位置;为使每一个局部最优值点都可能有微粒群中的微粒经过, 采用变步长的迭代计算;为防止优化函数曲线的某些局部峰附近没有
362465378
- 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用 问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法, 能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒 子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法 进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索-Mu
1234255
- 介绍了一种利用量子行为粒子群算法(QPSO)求解多峰函数优化问题的方法。为此,在 QPSO中引进一种物种形成策略,该方法根据群体微粒的相似度并行地分成子群体。每个子群体是 围绕一个群体种子而建立的。对每个子群体通过QPSO算法进行最优搜索。从而保证每个峰值都有 同等机会被找到,因此该方法具有良好的局部寻优特性。将基于物种形成的QPSO算法与粒子群算 法(PSO)对多峰优化问题的结果进行比较。对几个重要的测试函数进行仿真实验结果证明,基于物 种形成的QPSO算法可以尽
23445455
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
466676
- 针对小生境粒子群优化技术中小生境半径等参数选取问题,提出了一种新颖的小生境方法,无须小生 境半径等任何参数。通过监视粒子正切函数值的变化,判断各个粒子是否属于同一座山峰,使其追踪所在山峰 的最优粒子飞行,进而搜索到每一座山峰极值。算法实现简单,不仅克服了小生境使用中需要参数的弊端,而且 解决了粒子群算法只能找到一个解的不足。最后通过对多峰值函数的仿真实验,验证了算法可以准确地找到所 有山峰-Proposed a novel niche for niche particle
PSO-Algorithm
- 粒子群优化(Particle Swarm Optimization, PSO),又称微粒群算法,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。-Particle Swarm Optimization (Particle Swarm Optimization, PSO), also known as particle swarm optimization, by J. Kennedy and RC Eberhart eq
A-PSO-approach-to-clustering
- 一种较ACO、ABC算法优越的 PSOclustering-a particle swarm optimization approach to clustering
A-Decentralized-Cooperative-Control-Scheme-With-O
- The problem of formation control of a team of mobile robots based on the virtual and behavioral structures is considered in this paper. In the virtual structure, each mobile robot ismodeled by an electric charge. The mobile robots move toward a
A-Comparison-Between-the-Firefly-Algorithm-and-Pa
- A Comparison Between the Firefly Algorithm and Particle Swarm Optimization
Particle-Swarm-Optimization
- This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the abil
SWARM-books
- a complete ebook for artificial intelligence and computational intelligence, guides for algorithm development, a must have copy of ebook for programmers and researchers
OBJECT-RECOGNITION-USING-PARTICLE-SWARM-OPTIMIZAT
- A Packet Delay Analysis for Cellular Digital Packet Data
A-PARTICLE-SWARM-OPTIMIZATION
- A PARTICLE SWARM OPTIMIZATION ALGORITHM BASED ON UNIFORM DESIGN
Particle-Swarm-Optimization
- 本文提出变量随机分解策略,增加关联变量分配到同组的概率,使得算法更好的保留变量间的关联性,并将合作协同进化框架融合到算法中,提出了基于大规模变量分解的多目标粒子群优化算法-In this paper, a stochastic variable decomposition strategy is proposed to increase the probability of assigning related variables to the same group, which makes th
A-Swarm-Intelligence-Algorithm
- 联合稀疏恢复的Swarm算法,在基本particle swarm optimization (PSO)算法基础上进行改进-Inspired by particle swarm optimization (PSO) algorithm and some sparse recovery algorithms, a novel swarm intelligence algorithm called M-SISR is proposed to solve the problem. In M-
