搜索资源列表
Novel-approach-for-texture
- 为提高基于内容的图像检索系统中纹理特征提取的有效性,提出了又一种纹理图像检索方法。该方法 利用非下采样 Contourlet变换对图像进行分解, 提取不同子带和不同方向变换系数矩阵的均值和方差为特征向量, 作 为数据库中纹理图像的索引,并利用两种不同的相似度函数计算图像之间的相似度,建立了一套基于示例查询图像 的纹理图像检索系统。实验结果表明,与小波包等特征提取方法相比, 该方法不仅能降低特征向量维数,而且能取得 更高的检索准确率和检索速度。-To i ncrease t he
matlab
- 误差的来源 非线性方程(组)的数值解法 解线性方程组的直接方法 解线性方程组的迭代法 矩阵的特征值与特征向量的计算 函数的插值方法 函数逼近与曲线(面)拟合 数值微分 数常微分方程(组)求解值积分 -The source of the error Numerical method for solving the nonlinear equation (group) The direct method of solving linear
PCA
- 在这篇文章中,我们主要阐述了基于PCA和LDA的人脸识别技术。这个技术包含两个步骤:首先,我们通过PCA将人脸图片从原始向量空间中提取到子向量空间——特征脸空间;然后,再通过LDA获得一个线性分类器。-In this article, we mainly elaborated based on PCA and LDA face recognition technology. This technique consists of two steps: First, we will face ima
433
- 融合小波能谱熵和支持向量机SVM的特点提出了基于小波能谱熵的SVM故障诊断方法. 利用转子试验台对转子典型振动故障进行模拟并采集振动数据提取其振动信号的小波能谱熵作为特征向 量-Fusion wavelet energy entropy and support vector machine SVM is proposed based on the characteristics of wavelet energy entropy SVM fault diagnosis method. U
SLAM
- 本文研究了基于多传感器组合导航方法的SLAM,由于移动机器人无法通过单个传 感器得到可靠的信息,采用多传感器组合导航的方法可以很好的解决这个问题。本文用单个 CCD摄像头和里程计组合进行SLAM研究,并得到更准确的机器人位姿信息。首先用SIFT 算法对不同图像进行特征提取和匹配,得到本质矩阵,对它进行分解,可得到机器人的旋转 矩阵和平移向量(和实际相差一个比例因子)。然后,将它与里程计信息结合,得到机器人的 位姿。在此基础上,可以得到特征点在当前摄像机坐标系中的三维坐标,即创
