搜索资源列表
WebDataMining
- Web数据挖掘作为数据挖掘技术和Internet应用研究相结合的研究领域,涉及机器学习、数理统计、数据库、神经网络、模式识别、粗糙集、模糊数学等人工智能相关技术,目前已经发展成为一个受到社会各界关注的研究热点。
The_Status_Quo_of_Machine_Learning_of_Artificial_I
- 机器学习是人工智能的一个子领域,是人工智能中非常活跃且范围甚广的主要核心研究领域之一,也是现代智能系统的关键环节和瓶颈。机器学习吸取了人工智能、概率统计、计算复杂性理论、控制论、信息论、哲学、生理学、神经生物学等学科的成果,主要关注于开发一些让计算机可以自动学习的技术,并通过经验提高系统自身的性能。本文介绍了机器学习的概念、基本结构和发展,以及各种机器学习方法,包括机械学习、归纳学习、类比学习、解释学习、基于神经网络的学习以及知识发现等,并简单叙述了机器学习的相关算法,包括决策树算法、随机森林算
人工智能技术的未来发展方向
- 尽管深度学习已经在人工智能领域做出重大贡献,但这项技术本身仍存在一项缺陷:需要大量数据的加持。深度学习领域的先驱者乃至批评者已经就此达成共识——事实上,正是由于可用数据量有限加上处理大规模数据的计算能力不足,才导致深度学习直到最近几年才成为AI层面的前沿技术。
