搜索资源列表
-
0下载:
问题规模化是近来信息学竞赛的一个新趋势,它意在通过扩大数据量来增加算法设计和编程实现的难度,这就向信息学竞赛的选手提出了更高层次的要求,本文试图探索一些解决此类问题的普遍性的策略。开始,本文给出了“规模化”一词的定义,并据此将其分为横向扩展和纵向扩展两种类型,分别进行论述。在探讨横向扩展问题的解决时本文是以谋划策略的“降维”思想为主要对象的;而重点讨论的是纵向扩展问题的解决,先提出了两种策略——分解法和精简法,然后结合一个具体例子研究“剪枝”在规模化问题中的应用。问题规模化是信息学竞赛向实际运用
-
-
0下载:
流形学习,用于非线性维数约简,作为图像识别或者其他方法的预处理方法-Manifold learning, for nonlinear dimensionality reduction, as the pretreatment methods of image recognition, or other methods
-
-
0下载:
支持向量回归机工具箱。自编。带有GUI界面和使用教程。基于PCA降维和遗传算法寻优-Support vector regression toolbox. Self. With a GUI interface and tutorials. PCA dimensionality reduction based and genetic algorithm optimization
-
-
0下载:
Dimensionality reduction via variables selection – Linear and nonlinear
approaches with application to vibration-based condition monitoring
of planetary gearbox
-
-
0下载:
Randomized Dimensionality Reduction for k-means
Clustering
This paper makes further progress towards a better understanding of dimensionality reduction for kmeans
clustering. Namely, we present the first provably accurate feature selection met
-