CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 文档资料 行业发展研究 搜索资源 - SWARM A

搜索资源列表

  1. AFSA

    0下载:
  2. 人工鱼群算法是一种近年来提出的组合优化问题,该算法在收敛速度方面有明显的优势。并在现实的各个方面都已经开始应用。 -Artificial fish-swarm algorithm is a combinatorial optimization in recent years raised the issue in the convergence speed of the algorithm has an obvious advantage. And in reality, all aspec
  3. 所属分类:Development Research

    • 发布日期:2017-03-27
    • 文件大小:244.96kb
    • 提供者:
  1. Clerc_seminar_15122004

    0下载:
  2. A mini tutorial about Particle swarm optimization
  3. 所属分类:Development Research

    • 发布日期:2017-05-11
    • 文件大小:2.79mb
    • 提供者:nurten
  1. Clerc_seminar_15122004

    0下载:
  2. Particle swarm optimization (PSO) was originally designed and introduced by Eberhart and Kennedy (Ebarhart, Kennedy, 1995 Kennedy, Eberhart, 1995 Ebarhart, Kennedy, 2001). The PSO is a population based search algorithm based on the simulation of
  3. 所属分类:Development Research

    • 发布日期:2017-05-13
    • 文件大小:2.95mb
    • 提供者:Beta
  1. 1

    0下载:
  2. During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed. In many cases, the difference between two variants can be seen as an algorithmic component being present in one variant but
  3. 所属分类:Development Research

    • 发布日期:2017-04-17
    • 文件大小:294.34kb
    • 提供者:omid
  1. A-discussion-for-complex-systems

    0下载:
  2. 复杂系统研究方法的讨论,基于Agent的建模,Swarm与StarLogo的比较分析-A discussion onmethodologies for research into complex systems,Agen-t based models,Swarm,StarLogo
  3. 所属分类:Development Research

    • 发布日期:2017-03-30
    • 文件大小:220.71kb
    • 提供者:jiafangfang
  1. 04470122.rar

    0下载:
  2. This paper proposes a novel and computationally efficient global I< optimization method based on swarm ntelligence for locating ti nodes in a WSN environment. The mean squared range error of a all neighbouring anchor nodes is taken as the obj
  3. 所属分类:Development Research

    • 发布日期:2017-11-27
    • 文件大小:2.09mb
    • 提供者:Mohd Elsoufi
  1. Hybrid_PSO_entropy-15-01247-v2

    0下载:
  2. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with TimeWindow
  3. 所属分类:Development Research

    • 发布日期:2017-11-24
    • 文件大小:214.42kb
    • 提供者:ronan346
  1. A-New-PSO

    0下载:
  2. 本文提出了一种新的混合模糊动态速度反馈的粒子群的优化(HFDVF-PSO)解决经济调度问题的非光滑的成本考虑阀点效应和多种燃料选择功能。-This paper proposes a new Hybrid Fuzzy Dynamic Velocity Feedback Particle Swarm Optimization (HFDVF-PSO) for solving conomic Dispatch (ED) problem with non-smooth cost functions con
  3. 所属分类:Development Research

    • 发布日期:2017-11-18
    • 文件大小:432.05kb
    • 提供者:Junpeng Li
  1. particle-swarm-optimization

    0下载:
  2. 粒子群优化算法,外文的,学习粒子群算法的-PSO, a foreign language, learning PSO
  3. 所属分类:Development Research

    • 发布日期:2017-05-03
    • 文件大小:594.67kb
    • 提供者:wenxiaoqiang
  1. (CLAPSO)

    0下载:
  2. A new method to improve the Particle Swarm Optimization using Cellular Learning Automata (CLAPSO)
  3. 所属分类:Development Research

    • 发布日期:2017-04-16
    • 文件大小:324.48kb
    • 提供者:mhfff
  1. A-Modified-Particle-Swarm-Technique-for-Distribut

    0下载:
  2. reconfiguration network
  3. 所属分类:Development Research

    • 发布日期:2017-03-30
    • 文件大小:151.41kb
    • 提供者:thuandongan
  1. The-new-meta-heuristic-algorithm-bat

    1下载:
  2. 摘要:新型元启发式算法例如粒子群算法,萤火虫算法,和声搜索算法已经成为现今复杂的优化问题的有效解决方法。该文基于蝙 蝠的回声定位行为提出了一种新型的元启发式算法———蝙蝠算法,同时也将现有的一些算法的优点引入到该算法中。 改文对该算 法进行了详细的公式化表述并对其执行流程的作出了说明,并且将该算法与遗传算法、粒子群优化算法等算法进行了比较。仿真结 果表明,蝙蝠算法明显优于其他算法,并对进一步的研究作出了展望。-Summary: The new meta-heuristic algor
  3. 所属分类:Development Research

    • 发布日期:2017-04-01
    • 文件大小:615.44kb
    • 提供者:薛云强
  1. A PSO-based algorithm designed for a swarm of mobile robots

    0下载:
  2. A PSO-based algorithm designed for a swarm of mobile robots
  3. 所属分类:行业发展研究

    • 发布日期:2013-12-26
    • 文件大小:862.46kb
    • 提供者:ouissam5
  1. gray_level_apurba

    0下载:
  2. this a pdf for image enhancement using particle swarm optimization-this is a pdf for image enhancement using particle swarm optimization
  3. 所属分类:Development Research

    • 发布日期:2017-04-17
    • 文件大小:495.85kb
    • 提供者:raghavendra
  1. PSO-code-in-python

    1下载:
  2. this a particle swarm optimization code for python users. this code demonstrate how python can be used in optimization proce-this is a particle swarm optimization code for python users. this code demonstrate how python can be used in optimization pro
  3. 所属分类:Development Research

    • 发布日期:2015-04-10
    • 文件大小:1kb
    • 提供者:cincinbuyer
  1. mppt

    0下载:
  2. This paper proposes an improved maximum power point tracking (MPPT) method for the photovoltaic (PV) system using a modifi ed particle swarm optimization (PSO) algorithm.
  3. 所属分类:Development Research

    • 发布日期:2017-05-07
    • 文件大小:1.15mb
    • 提供者:kader
  1. cat-swarm-optimization

    0下载:
  2. In this paper, we present a new algorithm of swarm intelligence, namely, Cat Swarm Optimization (CSO). CSO is generated by observing the behaviors of cats, and composed of two sub-models, i.e., tracing mode and seeking mode, which model upon th
  3. 所属分类:Development Research

    • 发布日期:2017-04-25
    • 文件大小:126.53kb
    • 提供者:txd
  1. pso-based-pats-papr-ofdm

    1下载:
  2. A Suboptimal PTS Algorithm Based on Particle Swarm Optimization Technique for PAPR Reduction in OFDM Systems
  3. 所属分类:Development Research

    • 发布日期:2017-05-07
    • 文件大小:1.21mb
    • 提供者:sof
  1. estimation-extended-Kalman-filter

    1下载:
  2. 针对感应电机扩展卡尔曼滤波器转速估计中难以取得卡尔曼滤波器系统噪声矩阵和测量噪声矩阵最优值的问题,提出了一种基于改进粒子群算法优化的扩展卡尔曼滤波器转速估计方法。算法通过融合遗传算法和粒子群算法的优点,采用可调整的算法模型对粒子群算法进行改进,将改进的粒子群算法对扩展卡尔曼滤波器中的系统噪声矩阵和测量噪声矩阵进行优化处理,将优化后的卡尔曼滤波器应用于感应电机转速估计。- Extended K
  3. 所属分类:Development Research

    • 发布日期:2017-05-07
    • 文件大小:1.15mb
    • 提供者:
  1. A-combination-of-genetic-algorithm-and-particle-s

    0下载:
  2. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems Distributed generation (DG) sources are becoming more prominent in distribution systems due to the incremental dema
  3. 所属分类:Development Research

    • 发布日期:2017-05-03
    • 文件大小:521.72kb
    • 提供者:fifo_enp
« 12 »
搜珍网 www.dssz.com