CDN加速镜像 | 设为首页 | 加入收藏夹
当前位置: 首页 资源下载 文档资料 行业发展研究 搜索资源 - classification problem

搜索资源列表

  1. Studies-on-Fuzzy-C-Means-Based-on-Ant-Colony-Algo

    0下载:
  2. A fault identification with fuzzy C-Mean clustering algorithm based on improved ant colony algorithm (ACA) is presented to avoid local optimization in iterative process of fuzzy C-Mean (FCM) clustering algorithm and the difficulty in fault cl
  3. 所属分类:Development Research

    • 发布日期:2017-03-23
    • 文件大小:266.72kb
    • 提供者:rishi
  1. DataMining3rd

    0下载:
  2. 评测数据在去掉停用词的 分类过程开放测试中,引入Good-Turing算法的分类性能比Laplace原则提高了3·05 ,比Lidstone方法提高 1·00 .而在交叉熵选择特征词的算法中,增加Good-Turing的贝叶斯分类方法可比最大熵分类性能高95 .通过这种数据平滑的算法,有助于克服因数据稀疏而引发的特征词缺失问题 -Evaluation data in the open test of the classification process to remove stop
  3. 所属分类:Development Research

    • 发布日期:2017-05-19
    • 文件大小:5.11mb
    • 提供者:杨宁
  1. Hyperspectral-Image-Classification-Through-Bilaye

    0下载:
  2. Hyperspectral image classification with limited number of labeled pixels is a challenging task. In this paper, we propose a bilayer graph-based learning framework to address this problem. For graph-based classification, how to establish the n
  3. 所属分类:Development Research

    • 发布日期:2017-05-13
    • 文件大小:2.72mb
    • 提供者:bala
  1. first-review-report

    0下载:
  2. This project describes the problem of facial expression recognition in the field of computer vision. Firstly, the psychological background of the problem is presented. Then, the idea of facial expression recognition system (FERS) is outlined and the
  3. 所属分类:Development Research

    • 发布日期:2017-04-30
    • 文件大小:172.52kb
    • 提供者:Jashpreet
  1. sparse-representation-pdf

    0下载:
  2. This project describes the problem of facial expression recognition in the field of computer vision. Firstly, the psychological background of the problem is presented. Then, the idea of facial expression recognition system (FERS) is outlined and the
  3. 所属分类:Development Research

    • 发布日期:2017-05-09
    • 文件大小:1.59mb
    • 提供者:Jashpreet
  1. LEK-SRC

    1下载:
  2. 核稀疏用于字典学习和稀疏表示,可用于纹理分类等模式识别问题。-Nuclear sparse dictionary for learning and sparse representation can be used for texture classification pattern recognition problem.
  3. 所属分类:Development Research

    • 发布日期:2017-01-05
    • 文件大小:230kb
    • 提供者:龚飞
搜珍网 www.dssz.com