文件名称:rocplot
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:3.74kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
ROC curves illustrate performance on a binary classification problem where classification is based on simply thresholding a set of scores at varying levels. Lenient thresholds give high sensitivity but low specificity, strict thresholds give high specificity but low sensitivity the ROC curve plots this trade-off over a range of thresholds (usually with sens vs 1-spec, but I prefer sens vs spec this code gives you the option).
It is theoretically possible to operate anywhere on the convex hull of an ROC curve, so this is plotted too. The area under the curve (AUC) for a ROC plot is a measure of overall accuracy, and the area under the ROCCH is a kind of upper bound on what might be achievable with a weighted combination of differently thresholded results from the given classifier
-ROC curves illustrate performance on a binary classification problem where classification is based on simply thresholding a set of scores at varying levels. Lenient thresholds give high sensitivity but low specificity, strict thresholds give high specificity but low sensitivity the ROC curve plots this trade-off over a range of thresholds (usually with sens vs 1-spec, but I prefer sens vs spec this code gives you the option).
It is theoretically possible to operate anywhere on the convex hull of an ROC curve, so this is plotted too. The area under the curve (AUC) for a ROC plot is a measure of overall accuracy, and the area under the ROCCH is a kind of upper bound on what might be achievable with a weighted combination of differently thresholded results from the given classifier
It is theoretically possible to operate anywhere on the convex hull of an ROC curve, so this is plotted too. The area under the curve (AUC) for a ROC plot is a measure of overall accuracy, and the area under the ROCCH is a kind of upper bound on what might be achievable with a weighted combination of differently thresholded results from the given classifier
-ROC curves illustrate performance on a binary classification problem where classification is based on simply thresholding a set of scores at varying levels. Lenient thresholds give high sensitivity but low specificity, strict thresholds give high specificity but low sensitivity the ROC curve plots this trade-off over a range of thresholds (usually with sens vs 1-spec, but I prefer sens vs spec this code gives you the option).
It is theoretically possible to operate anywhere on the convex hull of an ROC curve, so this is plotted too. The area under the curve (AUC) for a ROC plot is a measure of overall accuracy, and the area under the ROCCH is a kind of upper bound on what might be achievable with a weighted combination of differently thresholded results from the given classifier
相关搜索: ROC
ROC curve
auc
ROC matlab
ROC ROI
convex hull matlab
classifier combination matlab code
accuracy sensitivity
AUC code
code of ROC matlab
(系统自动生成,下载前可以参看下载内容)
下载文件列表
license.txt
rocplot.m
rocplot.m
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
