文件名称:ibp
-
所属分类:
- 标签属性:
- 上传时间:2014-11-07
-
文件大小:7.98mb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
Included in this distribution is matlab code to generate posterior samples for
linear Gaussian and binary matrix factorization (noisy-or) Indian Buffet
Process models. Three different posterior sampling algorithms are provided:
Gibbs, reversible jump Markov chain Monte Carlo (RJMCMC), and sequential
importance sampling (SIS). Only the Gibbs and SIS samplers are provided for
the linear Gaussian IBP models.-Included in this distribution is matlab code to generate posterior samples for
linear Gaussian and binary matrix factorization (noisy-or) Indian Buffet
Process models. Three different posterior sampling algorithms are provided:
Gibbs, reversible jump Markov chain Monte Carlo (RJMCMC), and sequential
importance sampling (SIS). Only the Gibbs and SIS samplers are provided for
the linear Gaussian IBP models.
linear Gaussian and binary matrix factorization (noisy-or) Indian Buffet
Process models. Three different posterior sampling algorithms are provided:
Gibbs, reversible jump Markov chain Monte Carlo (RJMCMC), and sequential
importance sampling (SIS). Only the Gibbs and SIS samplers are provided for
the linear Gaussian IBP models.-Included in this distribution is matlab code to generate posterior samples for
linear Gaussian and binary matrix factorization (noisy-or) Indian Buffet
Process models. Three different posterior sampling algorithms are provided:
Gibbs, reversible jump Markov chain Monte Carlo (RJMCMC), and sequential
importance sampling (SIS). Only the Gibbs and SIS samplers are provided for
the linear Gaussian IBP models.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ibp/
ibp/linear_gaussian_model/
ibp/linear_gaussian_model/test.m
ibp/linear_gaussian_model/face_data.m
ibp/linear_gaussian_model/face_data_zm.m
ibp/linear_gaussian_model/generate_test_data.m
ibp/linear_gaussian_model/hyper_sampler.m
ibp/linear_gaussian_model/hyper_sampler_dont_sample_hypers.m
ibp/linear_gaussian_model/linear_gaussian_model.m
ibp/linear_gaussian_model/logPX.m
ibp/linear_gaussian_model/logPXZ.m
ibp/linear_gaussian_model/particle_filter.m
ibp/linear_gaussian_model/particle_filter_for_faces.m
ibp/linear_gaussian_model/pf_est_post.m
ibp/linear_gaussian_model/resample.m
ibp/linear_gaussian_model/sampZ.m
ibp/linear_gaussian_model/DIGITSDATA.mat
ibp/linear_gaussian_model/FACEDATA.mat
ibp/linear_gaussian_model/PF-out-100.mat
ibp/finite/
ibp/finite/cannonize.m
ibp/finite/sampY.m
ibp/finite/sampZ.m
ibp/finite/logPXYZ.m
ibp/finite/clean.m
ibp/finite/generate_test_data.m
ibp/finite/inferstats.m
ibp/finite/sampler.m
ibp/ibp_generate.m
ibp/cannonize.m
ibp/sampZ_finite.m
ibp/sampY.m
ibp/sampZ.m
ibp/logPZ.m
ibp/rjmcmc_sampler.m
ibp/plot_ibp_matrices.m
ibp/plot_graph.m
ibp/plot_circle.m
ibp/sampler.m
ibp/particle_filter.m
ibp/resample.m
ibp/hyper_sampler.m
ibp/plot_and_save_nips_graphs.m
ibp/logPXYZ.m
ibp/sampY_newrows_only.m
ibp/test.m
ibp/inferstats.m
ibp/generate_test_data.m
ibp/clean.m
ibp/secs2hmsstr.m
ibp/README
ibp/linear_gaussian_model/
ibp/linear_gaussian_model/test.m
ibp/linear_gaussian_model/face_data.m
ibp/linear_gaussian_model/face_data_zm.m
ibp/linear_gaussian_model/generate_test_data.m
ibp/linear_gaussian_model/hyper_sampler.m
ibp/linear_gaussian_model/hyper_sampler_dont_sample_hypers.m
ibp/linear_gaussian_model/linear_gaussian_model.m
ibp/linear_gaussian_model/logPX.m
ibp/linear_gaussian_model/logPXZ.m
ibp/linear_gaussian_model/particle_filter.m
ibp/linear_gaussian_model/particle_filter_for_faces.m
ibp/linear_gaussian_model/pf_est_post.m
ibp/linear_gaussian_model/resample.m
ibp/linear_gaussian_model/sampZ.m
ibp/linear_gaussian_model/DIGITSDATA.mat
ibp/linear_gaussian_model/FACEDATA.mat
ibp/linear_gaussian_model/PF-out-100.mat
ibp/finite/
ibp/finite/cannonize.m
ibp/finite/sampY.m
ibp/finite/sampZ.m
ibp/finite/logPXYZ.m
ibp/finite/clean.m
ibp/finite/generate_test_data.m
ibp/finite/inferstats.m
ibp/finite/sampler.m
ibp/ibp_generate.m
ibp/cannonize.m
ibp/sampZ_finite.m
ibp/sampY.m
ibp/sampZ.m
ibp/logPZ.m
ibp/rjmcmc_sampler.m
ibp/plot_ibp_matrices.m
ibp/plot_graph.m
ibp/plot_circle.m
ibp/sampler.m
ibp/particle_filter.m
ibp/resample.m
ibp/hyper_sampler.m
ibp/plot_and_save_nips_graphs.m
ibp/logPXYZ.m
ibp/sampY_newrows_only.m
ibp/test.m
ibp/inferstats.m
ibp/generate_test_data.m
ibp/clean.m
ibp/secs2hmsstr.m
ibp/README
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。