- 99servlet3 缘故环境很快就会了快好了就看了就看见共和国环境更健康北京很久很久
- NONAME2 基于单片机与ds18b20的温度测量实现的原程序
- FECFileDialogTest-2 Illustrates a technique for suppressing dialogs that might otherwise be shown to a user when hosting the WebBrowser control.
- location_Perceptron this source ia in matlab language and neural nettwork. in this code percepteon is tested.
- at91sam7s64_basicusb_20060901_public this file is best. as find fsdf ged sdfv dfvdf.
- listview 数据添加去闪烁功能实例源码下载
文件名称:adversarial.tar
介绍说明--下载内容来自于网络,使用问题请自行百度
此程序为对抗生成网络,生成图像。
生成对抗网络是一种生成模型(Generative Model),其背后基本思想是从训练库里获取很多训练样本,从而学习这些训练案例生成的概率分布。
而实现的方法,是让两个网络相互竞争,‘玩一个游戏’。其中一个叫做生成器网络( Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机噪声(Random Noise)转变成新的样本(也就是假数据)。另一个叫做判别器网络(Discriminator Network),它可以同时观察真实和假造的数据,判断这个数据到底是不是真的。”(This program is Generative Adversarial Net,and generate images.
The generation of confrontation network is a generative model (Generative Model). The basic idea behind it is to get many training samples from the training library, so as to learn the probability distribution of these training cases.
The realization of the method is to let the two networks compete with each other, 'play a game'. One is called Generator Network, which constantly captures the probability distribution of real pictures in training libraries, and transforms the input random noise (Random Noise) into new samples (that is, false data). Another method is called network (Discriminator Network), it can observe the true and false data, determine the data in the end is not really.")
生成对抗网络是一种生成模型(Generative Model),其背后基本思想是从训练库里获取很多训练样本,从而学习这些训练案例生成的概率分布。
而实现的方法,是让两个网络相互竞争,‘玩一个游戏’。其中一个叫做生成器网络( Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机噪声(Random Noise)转变成新的样本(也就是假数据)。另一个叫做判别器网络(Discriminator Network),它可以同时观察真实和假造的数据,判断这个数据到底是不是真的。”(This program is Generative Adversarial Net,and generate images.
The generation of confrontation network is a generative model (Generative Model). The basic idea behind it is to get many training samples from the training library, so as to learn the probability distribution of these training cases.
The realization of the method is to let the two networks compete with each other, 'play a game'. One is called Generator Network, which constantly captures the probability distribution of real pictures in training libraries, and transforms the input random noise (Random Noise) into new samples (that is, false data). Another method is called network (Discriminator Network), it can observe the true and false data, determine the data in the end is not really.")
相关搜索: 对抗生成网络
(系统自动生成,下载前可以参看下载内容)
下载文件列表
| 文件名 | 大小 | 更新时间 |
|---|---|---|
| fb729796ea010ad9d67f959b4099782a | 462336 | 2018-01-10 |
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
