文件名称:KMEANS10
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:19.32kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
The k-means algorithm is an algorithm to cluster n objects based on attributes into k partitions, k < n. It is similar to the expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to find the centers of natural clusters in the data. It assumes that the object attributes form a vector space. The objective it tries to achieve is to minimize total intra-cluster variance, or, the squared error function
(系统自动生成,下载前可以参看下载内容)
下载文件列表
KMEANS10/@Readme-CodeS-SourceS-FR.txt
KMEANS10/@Source telecharge depuis ce lien.url
KMEANS10/code/allocationDeallocation.cpp
KMEANS10/code/bouclePrincipale.cpp
KMEANS10/code/buttonEvent.cpp
KMEANS10/code/constructeurFenetre.cpp
KMEANS10/code/creationImage.cpp
KMEANS10/code/distance.cpp
KMEANS10/code/etirerHistogram.cpp
KMEANS10/code/initialisation.cpp
KMEANS10/code/k-moyennes.cpp
KMEANS10/code/MaFenetre.h
KMEANS10/code/main.cpp
KMEANS10/code/main.h
KMEANS10/code/matriceAppartenance.cpp
KMEANS10/code/minimum.cpp
KMEANS10/code/nouvCentroid.cpp
KMEANS10/code/resouces.rc
KMEANS10/code/walid.cbp
KMEANS10/code/walid.depend
KMEANS10/code/walid.layout
KMEANS10/code
KMEANS10
KMEANS10/@Source telecharge depuis ce lien.url
KMEANS10/code/allocationDeallocation.cpp
KMEANS10/code/bouclePrincipale.cpp
KMEANS10/code/buttonEvent.cpp
KMEANS10/code/constructeurFenetre.cpp
KMEANS10/code/creationImage.cpp
KMEANS10/code/distance.cpp
KMEANS10/code/etirerHistogram.cpp
KMEANS10/code/initialisation.cpp
KMEANS10/code/k-moyennes.cpp
KMEANS10/code/MaFenetre.h
KMEANS10/code/main.cpp
KMEANS10/code/main.h
KMEANS10/code/matriceAppartenance.cpp
KMEANS10/code/minimum.cpp
KMEANS10/code/nouvCentroid.cpp
KMEANS10/code/resouces.rc
KMEANS10/code/walid.cbp
KMEANS10/code/walid.depend
KMEANS10/code/walid.layout
KMEANS10/code
KMEANS10
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
