- 制做的ASP.Net简易论坛(vb.net)
- DSP例程 很多关于DSP240a的例程
- google_search_api 本次介绍使用Axis通过Web Service调用Google SOAP Search API
- gassplus2 Describes the component that generates the signals required to control the data acquisition procedure consisting of: waiting for the peaking time
- CameraCapture 融合激光雷达和摄像头的程序
- 网上视频点播系统 随着宽带速度的提升
文件名称:Othello
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:3.32mb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
使用java编写的GUI的黑白棋游戏,搜索算法采用经典的博弈树,并在此基础上做了大量优化,我的评估函数采用了Simon M. Lucas 和 Thomas P. Runarsson 在其合作发表的 Temporal Difference Learning Versus Co-Evolution for Acquiring Othello Position Evaluation 中通过对比即时差分学习(TDL,Temporal Difference
Learning)和协同进化(CEL,Co-Evolution)对于计算黑白棋的估值函数时得到的一个最佳 WPC,估值函数同时包括行动力的计算。于此同时,对于计算可行位置,我采用了基于查表的方法。对于开局,我使用了 Kyung-Joong Kim 和 Sung-Bae Cho 的 Evolutionary Othello Players Boosted by Opening Knowledge 使用的 99 种 well-defined 的开局表。
总体来说,AI智能很强,默认等级一般人是下不过它的。-GUI using java prepared Riversi games, search algorithms using classical game tree, and on this basis have done a lot of optimization, the evaluation function I used Simon M. Lucas and Thomas P. Runarsson published in its Temporal Difference Learning Versus Co-Evolution for Acquiring Othello Position Evaluation in the difference by comparing the real-time learning (TDL, Temporal Difference
Learning) and co-evolution (CEL, Co-Evolution) Smileys for the calculation of the valuation function to be one of the best of the WPC, the valuation function at the same time including the calculation of mobility. At the same time, a viable location for the calculation, I used the method based on the look-up table. For start, I used the Kyung-Joong Kim and Sung-Bae Cho s Evolutionary Othello Players Boosted by Opening Knowledge use of 99 kinds of well-defined start of the table.
Generally speaking, AI very smart, the default level, however most people are under it.
Learning)和协同进化(CEL,Co-Evolution)对于计算黑白棋的估值函数时得到的一个最佳 WPC,估值函数同时包括行动力的计算。于此同时,对于计算可行位置,我采用了基于查表的方法。对于开局,我使用了 Kyung-Joong Kim 和 Sung-Bae Cho 的 Evolutionary Othello Players Boosted by Opening Knowledge 使用的 99 种 well-defined 的开局表。
总体来说,AI智能很强,默认等级一般人是下不过它的。-GUI using java prepared Riversi games, search algorithms using classical game tree, and on this basis have done a lot of optimization, the evaluation function I used Simon M. Lucas and Thomas P. Runarsson published in its Temporal Difference Learning Versus Co-Evolution for Acquiring Othello Position Evaluation in the difference by comparing the real-time learning (TDL, Temporal Difference
Learning) and co-evolution (CEL, Co-Evolution) Smileys for the calculation of the valuation function to be one of the best of the WPC, the valuation function at the same time including the calculation of mobility. At the same time, a viable location for the calculation, I used the method based on the look-up table. For start, I used the Kyung-Joong Kim and Sung-Bae Cho s Evolutionary Othello Players Boosted by Opening Knowledge use of 99 kinds of well-defined start of the table.
Generally speaking, AI very smart, the default level, however most people are under it.
相关搜索: ai
Othello ja
Temporal Difference Learning
LAN othello java code
othello
othello java
java othello
TEMPORAL DIFFERENCE
(系统自动生成,下载前可以参看下载内容)
下载文件列表
061221015/代码/Generator.rar
061221015/代码/Othello.rar
061221015/代码/readme.txt
061221015/文档/Othello设计文档.doc
061221015/文档/Othello设计文档.pdf
061221015/代码
061221015/文档
061221015
061221015/代码/Othello.rar
061221015/代码/readme.txt
061221015/文档/Othello设计文档.doc
061221015/文档/Othello设计文档.pdf
061221015/代码
061221015/文档
061221015
1999-2046 搜珍网 All Rights Reserved.
本站作为网络服务提供者,仅为网络服务对象提供信息存储空间,仅对用户上载内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
