搜索资源列表
getLaplacian1
- 拉普拉斯变换程序代码,主要针对图像处理实现软扣图应用,对图像进行还原,细节清晰化-Laplace transform program code, mainly for image processing soft-button map application to restore the image, detail clarity
Basedonthecharacteristicsofdigitalimagefrequencydo
- 提出了一种基于非采样连续小波变换的模值梯度法的清晰度评价准则,对恢复图像的清晰度进行评价-Proposed a sampling based on non-continuous wavelet transform modulus values of the clarity of evaluation criteria gradient method, to restore the clarity of the image evaluation
inverse_winer_filter
- 对图像进行模糊处理,用逆滤波和维纳滤波恢复图像,也是实验时自己编写的代码,请多指教。-Fuzzy image processing, inverse filtering and Wiener filter to restore the image, but also experiments have written code, like him Zhijiao.
FFT2_2.0
- 将图像进行FFT变换,并进行高通和低通滤波,然后进行IFFT变换,还原图像-FFT transform the image and high-pass and low pass filter, and then IFFT transform, restore image
GDFT
- 该程序基于开源项目,是一种快速样条分形变化的算法,用于通过频域采样数据对图像进行伪作色还原,对提高甚高频扫描隧道显微技术成像质量有着非常重要的意义。-The program is based on the open source project, a fast-spline fractal algorithm change for pseudo-pornographic images by the frequency-domain sampling data restore quality of
infohiden
- 利用F5实现的信息隐藏java源代码,有界面,实现了将文本信息隐藏到图像并且可以还原出来-F5 achieve to hide java source code, interface text information hidden to the image, and you can restore them
xiaobo
- 小波分析的应用是与小波分析的理论研究紧密地结合在一起地。它已经在科技信息产业领域取得了令人瞩目的成就。 电子信息技术是六大高新技术中重要的一个领域,它的重要方面是图像和信号处理。现今,信号处理已经成为当代科学技术工作的重要部分,信号处理的目的就是:准确的分析、诊断、编码压缩和量化、快速传递或存储、精确地重构(或恢复)。从数学地角度来看,信号与图像处理可以统一看作是信号处理(图像可以看作是二维信号),在小波分析地许多分析的许多应用中,都可以归结为信号处理问题。对于其性质随时间是稳定不变的信号,处理
wave-change-matlab
- Matlab小波去噪(默认,强制,给定三种情况) 利用小波分析对监测采集的信号进行去噪处理,恢复原始信号-Matlab wavelet denoising (default, mandatory, given three cases) using wavelet analysis to monitor the signal acquisition denoising treatment, restore the original signal
fuliyedaxishubijin
- 将图像进行二维傅立叶变换,选取一定数量大系数,其余置零,然后还原图像。(The image is a two-dimensional Fu Liye transformation, select a certain number of coefficients, the rest to zero, and then restore the image.)
xiaobodaxishubijin
- 利用Harr小波对图像进行小波变换,提取一定数量的大系数,然后进行还原。(The image wavelet transform using Harr wavelet coefficients, extract a certain number, and then restore.)
