搜索资源列表
-
2下载:
贝叶斯优化算法是一种新的演化算法,通过贝叶斯概率统计的知识来学习后代,可是使演化朝有利的方向前进,程序用C实现了贝叶斯优化算法。-Bayesian Optimization Algorithm is a new evolutionary algorithm, through Bayesian probability and statistics to learn the knowledge of future generations, but to enable the evolution to
-
-
0下载:
用L-M 优化算法与贝叶斯正则化算法训练同一个样本,By LM optimization algorithm with Bayesian regularization algorithm for training with a sample
-
-
0下载:
采用贝叶斯正则化算法提高bp网络的性能,即L-M优化算法-The use of Bayesian regularization algorithm to improve network performance bp, that is, LM optimization algorithm
-
-
0下载:
采用贝叶斯正则化算法提高BP网络的推广能力。在本例中,将采用两种训练方法,即L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP网络,使其能够拟合某一附加有白噪声的正弦样本数据。-The use of Bayesian regularization algorithm for BP network to improve generalization ability. In this case, two types of training methods will b
-
-
1下载:
动态贝叶斯网络结构学习算法,用来检验基于BOA的DBN结构寻优体系的合理性与可行性。环境matlab 6.1以上-Dynamic Bayesian network structure learning algorithm, the DBN used to test the structure-based optimization BOA system is reasonable and feasible. Environmental matlab 6.1 or above
-
-
1下载:
采用动量梯度下降算法训练BP网络,采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络-Gradient descent algorithm using momentum BP network training, using two training methods, namely, LM optimization algorithm (trainlm) and Bayesian regularization algorithm (t
-
-
0下载:
Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms
-
-
0下载:
采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr)-Using two training methods, namely, LM optimization algorithm (trainlm) and Bayesian regularization algorithm (trainbr)
-
-
0下载:
基于大坝温控的温度预报程序,采用了L-M优化算法和贝叶斯正则化算法,结果良好-Prediction based on the temperature of the dam temperature control program, using the LM optimization algorithm and the Bayesian regularization algorithm, good results
-
-
0下载:
Traditional single particle reconstruction methods use either the Fourier or the delta function basis to represent the particle density map. We propose a more flexible algorithm that adaptively chooses the basis based on the data. Because the basis a
-
-
0下载:
采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正 -Bayesian regularization algorithm to improve the generalization ability of BP network. In this example, we use two training methods, namely LM optimization algorithm (trainlm) and Baye
-
-
0下载:
“Fast Tracking via Dense Spatio-Temporal Context Learning,” In ECCV 2014的源代码,效果非常好。-In this paper, we present a simple yet fast and robust algorithm which exploits the spatio-temporal context for visual tracking. Our approach formulates the spatio-te
-
-
0下载:
可自由选择贝叶斯正则化算法或者是L-M 优化算法的神经网络matlab代码-The freedom to choose the Bayesian regularization algorithm or LM optimization algorithm neural network matlab code
-
-
0下载:
部分实现了追踪测速迭代松弛算法,UfKDoAK参数包含优化类的几个简单示例程序,通过matlab代码,是机器学习的例程,YGzNBvR条件验证可用,包括主成分分析、因子分析、贝叶斯分析。- Partially achieved tracking speed iterative relaxation algorithm, UfKDoAK parameter Optimization class contains several simple sample programs, By matlab
-
-
0下载:
包含优化类的几个简单示例程序,三相光伏逆变并网的仿真,利用贝叶斯原理估计混合logit模型的参数,模式识别中的bayes判别分析算法,计算加权加速度。-Optimization class contains several simple sample programs, Three-phase photovoltaic inverter and network simulation, Bayesian parameter estimation principle mixed logit mode
-
-
0下载:
包含优化类的几个简单示例程序,借鉴了主成分分析算法(PCA),利用贝叶斯原理估计混合logit模型的参数,插值与拟合,解方程,数据分析,实现典型相关分析,关于小波的matlab复合分析。- Optimization class contains several simple sample programs, It draws on principal component analysis algorithm (PCA), Bayesian parameter estimation princip
-
-
0下载:
最小二乘回归分析算法,实现串口的数据采集,利用贝叶斯原理估计混合logit模型的参数,LCMV优化设计阵列处理信号,课程设计时编写的matlab程序代码,抑制载波型差分相位调制。-Least-squares regression analysis algorithm, Achieve serial data acquisition, Bayesian parameter estimation principle mixed logit model, LCMV optimization desig
-
-
0下载:
多抽样率信号处理,用MATLAB实现动态聚类或迭代自组织数据分析,LCMV优化设计阵列处理信号,利用贝叶斯原理估计混合logit模型的参数,最大信噪比的独立分量分析算法,解耦,恢复原信号,仿真效率很高的,gmcalab 快速广义的形态分量分析。- Multirate signal processing, Using MATLAB dynamic clustering or iterative self-organizing data analysis, LCMV optimization des
-
-
0下载:
例1 采用动量梯度下降算法训练 BP 网络。
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。-Example 1 uses the momentum gradient descent algorithm to train the BP network.
Example 2 uses the Bayesian
-
-
0下载:
New method of convex optimization in CS
-