搜索资源列表
Mcoloring
- 回溯法的m着色问题,用bool方阵(方阵阶数表示点数)表示两点是否邻接。结果实现出所有颜色数小于m的着色方法-retroactive law m coloring problems, bool Matrix (Matrix said the order points), whether adjacent 2:00. The results achieved in all colors of a few less than the colored m
color1
- 给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点 着一种颜色。是否有一种着色法使G中每条边的2个顶点着不同颜色。这个问题是 图的m可着色判定问题。若一个图最少需要m种颜色才能使图中每条边连接的2个 顶点着不同颜色,则称这个数m为该图的色数。求一个图的色数m的问题称为图的 m可着色优化问题。 -Given an undirected connected graph G, and m kinds of different colors. With thes
MIT_AI_lec_03
- 麻省理工的人工智能讲义第三章 约束满足问题 介绍了各种类型的约束满足问题-AI lecture-3 of MIT talking about Constraint Satisfaction Problems (CSPs):N-Queens problem;line labelings;Graph coloring;3-SAT; Model-based recognition etc.
PSO
- 粒子群优化算法的源程序代码 经验证是可行的-Personal collection of a directed acyclic graph support vector machine for multi-classification problems
n-queen
- N皇后问题、图着色问题、矩阵连乘问题代码实现-N-queens problem, graph coloring problems, matrix multiplicative code implementation
GCP
- 着色问题,是最著名的NP-完全问题之一。 给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。其优化版本是希望获得最小的K值。-Coloring problem, is the most famous NP-complete problems. Given an undirected graph G = (V, E), where V is the set of vertices, E is the se
Coloring-Problem
- 图着色问题(Graph Coloring Problem, GCP)又称着色问题,是最著名的NP-完全问题之一。路线着色问题是图论中最著名的猜想之一。-Graph coloring problem (Graph Coloring Problem, GCP), also known as coloring problem, is the most famous NP-complete problems. Line graph coloring problem is one of the most
yiqun
- 蚁群优化算法最初用于解决TSP问题,经过多年的发展,已经陆续渗透到其他领域中,比如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。-Ant colony optimization algorithm for solving the TSP problem initially, after years of development, has been gradually penetrate into other areas, such as graph col
simulated annealing algorithm
- 模拟退火算法的应用很广泛,可以较高的效率求解最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)、调度问题(Scheduling Problem)等等。(Simulated annealing algorithm is widely used, can be more efficient to solve the maximum Problem Cut (Max), 0-1
AntColonyOptimization-TSP
- 蚁群算法作为新发展的一种模拟蚂蚁群体智能行为的仿生优化算法,它具有较强的鲁棒性、优良的分布式计算机制、易于与其他方法相结合等优点,本算法用来解决最短路径问题,并在TSP旅行商问题上取得较好的成效。同时也可以在他领域如图着色问题、车辆调度问题、集成电路设计、通讯网络、数据聚类进行参考。(Ant colony algorithm is a newly developed bionic optimization algorithm that simulates the ant colony intel
