搜索资源列表
Euler
- 欧拉定理 对于互质的整数a和n,有aφ(n) ≡ 1 mod n -Euler' s theorem for coprime integers a and n, there is aφ (n) ≡ 1 mod n
cata
- 利用大整数问题实现catalan数的求解,catalan数的计算涉及到互质问题-The use of large integer problems solving to achieve catalan number, catalan calculation of the number of issues related to coprime
main.cpp_1
- This program calculate if two numbers are coprimes For given integer N (1<=N<=10^4) find amout of positive numbers not greater than N that coprime with N. Let us call two positive integers (say, A and B, for example) coprime if (and only
niyuan
- 本程序实现判断两个大数之间是否互素,例如大数A和大数M,在程序运行之后会显示A和M是否互素,A是否存在模M的逆元,并且显示出程序运行所需要的时间。-This program is used to judge whether two large numbers are mutually prime numbers.For example,A and M are large numbers , when we run the program ,we will see whether A and M
yushu
- 余数定理用于多基线相位干涉仪的解模糊中要求基线关系互质-Remainder theorem for the solution of multi-baseline interferometer fuzzy requirements baseline relations coprime
a
- 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。 φ函数的值 通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn) 其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。 (注意:每种质因数只一个。比如12=2*2*3 那么φ(12)=12*(1-1/2)*(1-1/3)=4) 若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了
co_prime
- 互质阵列中稀疏表示理论完成DOA估计算法-Coprime complete array sparse representation theory DOA Estimation Algorithm
CoprimeDOA
- 互质doa算法,研究在互质阵列下的doa估计问题,有效估计目标角度-Co DOA algorithm, the estimation problem in the DOA array of Coprime, efficient estimation of the target angle
demo
- 基于互质采样-分段相参积累多项式相位变换的微弱线性调频信号检测算法。该代码的相关论文以oral presentation的形式发表于2018年10月在南京举行的IET国际雷达会议。(Multi-component LFM parameter estimation via order-2 DPT (overlapping and coprime) Author: Dr. Shengheng LIU)
sparse-coprime-
- sparse coprime array direction of arrival
