搜索资源列表
编辑距离问题
- 此算法也是非常常用的算法之一,在这个算法中我们特别要明白编辑距离问题的实质所在.-This algorithm is very commonly used algorithm, the algorithm in particular, we need to understand edit distance the real problem lies.
dpa
- 动态规划算法求字符串的相似性(编辑距离)-dynamic programming algorithms to find the similarity of the string (edit distance)
Edit Distance算法
- 对模式识别中的字符串模板匹配问题进行的研究,设计了对任意字符串进行匹配和字符串相似度,即列文斯顿距离进行计算的算法-right pattern recognition template matching string for the research and design of the arbitrary strings and string matching similarity, Ken Livingstone distance calculation algorithm
用动态规划算法思想求最小编辑距离
- 用动态规划算法思想求最小编辑距离,即近似字符串匹配问题,Thinking of using dynamic programming algorithm for the minimum edit distance, that is, approximate string matching problem
suanfa
- 设A和B是2个字符串。要用最少的字符操作将字符串A转换为字符串B。这里所说的字符操作包括: 1. 删除一个字符 2. 插入一个字符 3. 将一个字符改为另一个字符 将字符串A变换为字符串B所用的最少操作数称为A到B的编辑距离,极为d(A,B)。设计一个算法,计算任意两个字符串的编辑距离。 -Set A and B are two strings. Operation will use the least character string A is converted to a
L_A_distance
- Levenshtein 距离算法实现。Levenshtein 距离测量两个字符串的相近性-The "Levenshtein distance" is a measure of the similarity between two strings, this algorithm is also refered to as "edit distance".
1132813581
- 算法导论书上的动态规划---编辑距离的实现-algorithm==== edit distance
TemplateMatchingProgram
- 这是模式识别中模板匹配内容的Matlab例程,其中edit_distance程序用来计算两个符号字符串间的编辑距离; back-tracking程序是“回溯”法画出最佳路径的代价网格; Dtw-Sakoe.m程序是具有Sakoe-Chiba局部路径约束的动态时间弯 折。-This is a pattern recognition template matching the content of Matlab routines, which edit_distance proce
distanceEdition
- 用动态规划的方法来实现的编辑距离问题。没了-Using dynamic programming methods to achieve the edit distance problem. Gone
MagicCube
- 细菌。。关于编辑距离的计算。与前面那个不同。这个详细很多-Bacteria. . On the edit distance calculation. That different from the previous. The details of many
ClusterTitle_ED
- 能实现大规模文本间的编辑距离的计算,算法完整市现了处理过程,基于vc6.0环境编写,可以运用与聚类算法。-To achieve large-scale text edit distance between the calculation, the algorithm is a complete city process, based on the vc6.0 environmental preparation, and clustering algorithms can be used.
bianjijuliwenti
- 编辑距离问题,适合算法课提交的程序,VC++下编译通过的-Edit distance problem, the procedure for submission algorithm class, VC++ compiled by the
LD
- 又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。 -Also known as Levenshtein distance (also known as Edit Distance), is between two strings, one by one turned into the minimum required number of edit
tdistance-stringlabel
- 计算任意两棵树结构间的编辑距离,是Zhang和Shasha提出来的,时间复杂度为O(V*V *min(L, D)*min(L , D -compute the edit distance between two tree structures, it s proposed by Zhang and Shasha , time complexity is O(V*V *min(L, D)*min(L , D ))
ld
- 计算两个序列之间的编辑距离,使用c++实现-Compute the edit distance between two sequences
EditPDistance
- edit distance.字符串之间编译距离,包括插入,删除,替换。 -edit distance
edit_distances
- Edit Distance Levenstin Distance and etc
Distance
- 这个程序是用java语言编写的,主要是对编辑距离算法的实现。在程序中输入两个字符串,可以有效据算这两个字符串之间的编辑距离。-This procedure is used java language, mainly on the edit distance algorithm. Enter the two strings in the program, which can be effectively calculated according to the edit distance betwe
edit-distance
- 算法导论(3)动态规划中edit distance 一题解答-Introduction to Algorithms (3) dynamic programming in an edit distance Answers
min_edit-distance
- Minimum edit distance problem implementation in c++. One of the fundamental problems in Dynamic Programming.
