搜索资源列表
svm_v0.55beta
- 最新的支持向量机工具箱,有了它会很方便 1. Find time to write a proper list of things to do! 2. Documentation. 3. Support Vector Regression. 4. Automated model selection. REFERENCES ========== [1] V.N. Vapnik, \"The Nature of Statistical Learning Theory\", Springer-Verl
stprtool.rar
- 统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含: 1,Analysis of linear discriminant function 2,Feature extraction: Linear Discriminant Analysis 3,Probability distribution estimation and clustering 4,Support Vector and other Kernel Machines,
GaussianFiltering
- 利用高斯核自行完成高斯平滑。 1.gkernel.m: 创建高斯核。 2.getnorm.m: 将高斯核归一化以求得该核的图像 3.convo.m:不用自带函数求卷积 4.conducting.m: 举例执行程序-1.gkernel.m: Buidling Gaussian kernels. 2.getnorm.m: Normalizing Gaussian kernel in order to display the kernel. 3.convo.m: calcula
svm4
- -s svm类型:SVM设置类型(默认0) 0 -- C-SVC 1 --v-SVC 2 – 一类SVM 3 -- e -SVR 4 -- v-SVR -t 核函数类型:核函数设置类型(默认2) 0 – 线性:u v 1 – 多项式:(r*u v + coef0)^degree 2 – RBF函数:exp(-r|u-v|^2) 3 –sigmoid:tanh(r*u v + coef0) -d degree
fast_cpda
- 一种快速的基于在弦到点距离累技术的角点检测- A Fast Corner Detector Based on the Chord-to-Point Distance Accumulation Technique 1. Find the edge image using the Canny edge detector. 2. Extract edges (curves) from the edge image: 2a. fill gaps if they are
Edge-based-text-region-extraction-from-natural-im
- The basic steps of the edge-based text extraction algorithm are given below 1. Create a Gaussian pyramid by convolving the input image with a Gaussian kernel and successively down-sample each direction by half. (Levels: 4) 2. Create directiona
核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用
- 主要功能有: (1)训练数据和测试数据的非线性主元提取(降维、特征提取) (2)SPE和T2统计量及其控制限的计算 (3)故障检测 KPCA的建模过程(故障检测): (1)获取训练数据(工业过程数据需要进行标准化处理) (2)计算核矩阵 (3)核矩阵中心化 (4)特征值分解 (5)特征向量的标准化处理 (6)主元个数的选取 (7)计算非线性主成分(即降维结果或者特征提取结果) (8)SPE和T2统计量的控制限计算
