搜索资源列表
Scheduling_Scientific_Workflow_Applications_with_
- Grid technologies have progressed towards a service-oriented paradigm that enables a new way of service provisioning based on utility computing models, which are capable of supporting diverse computing services. It facilitates scientific applicat
QPSO1
- QoS路由组播问题的QPSO(Quantum-behaved Paricle Swarm Optimization)算法 量子粒子群优化算法 可应用于路由组播模型等-Quantum-behaved Paricle Swarm Optimization Algorithms based on Multicast Routing Issues
duoboluyou
- 针对通信网络中多重QoS约束条件下的多播路由计算,提出了一个基于模拟退火技术的改进遗传算法HGA-QoSR。该算法把模拟退火技术的局部寻优能力与遗传算法的全局寻优能力有机结合,并利用隔离小生境机制控制种群的独立进化,使演化过程中的种群保持生态多样性,以提高算法运行效率和解的质量。理论分析和仿真实验表明,与传统遗传算法相比较,该算法性能有显著改进。 -Communication networks for multi-QoS Constrained multicast routing calcula
Particle-swarm-algorithm-QOS
- 具有NP-C性质的QoS路由优化已经成为网络研究中的一个热点问题, 粒 子群算法所具有的优点成为解决 QoS 路由优化的有效方式。-With NP-C nature of the QoS routing optimization has become a network of research of a hot issue, grain The son has the advantages of the algorithm to solve the optimization of the e
