搜索资源列表
-
0下载:
利用parzen窗进行概率密度函数估计,并给出仿真,程序简单易懂。-Using parzen Window probability density function estimation and the simulation, the program is simple to understand.
-
-
5下载:
二维数据集Parzen方窗非参数估计PDF(概率密度函数),三维结果显示,有图,有完整说明文档和程序运行说明,matlab编程环境,此为模式识别小作业 parzen-Dimensional data set Parzen Window non-parametric estimation side PDF (probability density function), three-dimensional results show that map, with complete documentat
-
-
1下载:
parzen window density estimation with Gaussian as a smoothing factor
-
-
1下载:
用Parzen窗法或者kn近邻法估计概率密度函数,得出贝叶斯分类器,对测试样本进行测试,比较与参数估计基础上得到的分类器和分类性能的差别.2. 同时采用身高和体重数据作为特征,用Fisher线性判别方法求分类器,将该分类器应用到训练和测试样本,考察训练和测试错误情况。将训练样本和求得的决策边界画到图上,同时把以往用Bayes方法求得的分类器也画到图上,比较结果的异同。3.选择上述或以前实验的任意一种方法,用留一法在训练集上估计错误率,与在测试集上得到的错误率进行比较。-Use Parzen Wi
-
-
2下载:
用matlab进行概率密度函数的非参数估计,主要有parzen窗法和kn近邻法。分别对平均分布和正态分布进行了仿真。-Non-parametric estimation of the probability density function using matlab, main the parzen window method and kn nearest neighbor method. The average distribution and normal distribution were
-
-
0下载:
machine learning-Density Estimation objects.
parzen - Parzen s windows kernel density estimator
indep - Density estimator which assumes feature independence
bayes - Classifer based on density estimation for each class
gauss - Normal distr
-
-
0下载:
核密度估计的parzen窗法,简单易用,适合于初学非参数估计的用户。-Kernel Density Estimation parzen window method, easy to use, suitable for novice non-parametric estimation of the user.
-
-
1下载:
给定若干三维数据,建立训练概率模型,并对新数据进行估计。包括高斯模型、Parzen窗和K近邻密度估计-Given a number of three-dimensional data, the establishment of training probability model, and the new data is estimated. Including the Gaussian model, Parzen windows and K nearest neighbor density e
-