搜索资源列表
一种规则和贝叶斯方法相结合的文本自动分类策略
- 一种规则和贝叶斯方法相结合的文本自动分类策略-rules and a Bayesian approach is a combination of automatic text classification strategy
bow-latest.tar
- 贝叶斯学习算法分类文本。基于朴素贝叶斯分类器的文本分类的通用算法,是目前所知文本分类算法中最有效的一类-Bayesian text classification algorithm. Based on Bayesian classifier of the common text classification algorithm, which is known text classification algorithm the most effective one category
beyes
- 详细介绍了贝叶斯公式在自动文本分类领域的使用,并且提到了关于互信息特征提取的方法。以及其分类的例子。-Bayesian formula described in detail in the field of automatic text categorization of the use of, and reference information on each feature extraction method. As well as examples of their classificat
TextClassification
- 文本自动分类技术是当今信息检索和情报检索的一个重要研究课题,所采用的理论和技术之一是当前国际上研究的热门领域:数据挖掘和知识发现技术。-Automatic text categorization technology is today' s information retrieval and information retrieval as an important research topic, using one of the theory and technology is a ho
Bayes_1
- 首先,对CATEGORY中的txt文件分类; 其次,对多个txt文件中的英文文本进行分词; 最后,通过贝叶斯公式进行分类;-First, in the txt file CATEGORY classification Secondly, multiple txt files in English text word Finally, by Bayes formula to be classified
Bayes-KNN
- 基于贝叶斯-KNN文本分类算法的设计与实现。 是贝叶斯和KNN两种分类算法的结合。-Bayesian-KNN text categorization algorithm design and implementation. Bayes and KNN is a combination of two kinds of classification algorithms.
maxent-2.5.2
- 使用最大熵模型进行中文文本分类,效率高,并且附有例子说明-Using Maximum Entropy Model for Chinese Text Categorization, high efficiency
KNN
- 数据挖掘中的经典算法,机器学习领域常用的KNN临近学习算法,可用于文本向量分类等用途。-Classical data mining algorithms, machine learning algorithms commonly used KNN approaching learning can be used for text vector classification purposes.
NNapplication
- 数据挖掘经典算法之一,KNN临近算法。可用于机器学习领域的文本向量分类等用途。-One of the classical data mining algorithms, KNN algorithm approaching. Can be used for text vector machine learning classification purposes.
Text-Mining-in-R
- 文本挖掘的经典实例,文本挖掘被描述为 “自动化或半自动化处理文本的过程”,包含了文档聚类、文档分类、自然语言处理、文体变化分析及网络挖掘等领域内容。-Text Mining in R
支持向量机(Support Vector Machine, SVM)
- 支持向量机(support vector machine,SVM)是由Cortes和Vapnik在1995年提出的,由于其在文本分类和高维数据中强大的性能,很快就成为机器学习的主流技术,并直接掀起了“统计学习”在2000年前后的高潮,是迄今为止使用的最广的学习算法。(Support vector machine (support vector machine, SVM) is proposed by Cortes and Vapnik in 1995, because of its powerf
