搜索资源列表
wave_generator_VC
- 正弦波形生成器,直接写到文件,可以用goldwave等软件进行播放。只要修改c文件里的宏,可以生成任意频率的正弦波。silentecho作品。-sine-generator, the paper wrote directly, you can use software such as goldwave player. As long as amended c documents in the macros, can generate the sine wave frequency. Silent
PeriodicSignalFrequency-domainAnalysis
- 周期信号是定义在区间内,按一定时间间隔(周期)不断重复的信号。设有周期信号,周期为,角频率,且满足狄里赫利条件,则该周期信号可以展开成傅立叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。傅立叶级数有三角形式和指数形式两种
DSP中含有gauss白噪声的双频正弦输入
- DSP中输入信号的生成过程。 conio.cpp实现X(n)信号,其中有两个频率分量的正弦信号(正弦计算由sinwn.cpp实现),频率可变,这里取140Hz和70Hz。 考虑了高斯白噪声,由gauss.cpp实现。 最后该信号共产生2000个点,最后的信号点存储于 “x.txt”文本中。-DSP input signal generation process. Conio.cpp achieve X (n) signal, in which there are two components o
FFT
- 利用FFT估计正弦信号的频率,要估计一个叠加了高斯白噪声的正弦信号 的频率 ,可以通过对x(n)做傅里叶变换,得到频谱图,找出幅度的最大值对应的频率值 ,进行多次变换,求出均方误差 。改变信噪比SNR,通过仿真可以得出随着信噪比增加,均方误差减小。-Sinusoidal signal using FFT frequency estimation, to estimate a Gaussian white noise superimposed on the frequency of sinusoi
FFTshow
- 可产生矩形脉冲和正弦信号,矩形脉冲的脉宽可以改变,正弦信号则可以改变频率和时宽-Can produce rectangular pulse and sinusoidal signal, the rectangular pulse width can be changed, sinusoidal signal can be changed when the frequency and width
FLCH3eg5
- 采用3-6-1型bp网络学习非线性正弦信号sin(2pi*k/50),其中2*pi/50是正弦信号的频率,k是采样次数。-Bp-based 3-6-1 network used to learn non-linear sinusoidal signal sin (2pi* k/50), which is 2* pi/50 frequency sinusoidal signal, k is the sampling frequency.
fft
- 对正弦信号进行傅里叶变化,然后估计频率,在不同信噪比下画出均值方差的图-In the data process the measured complex time signal is converted into frequency signal by DFT to get vibration information regarding frequency and amplitude of the rotor
Text1
- 标准正弦扫描波生成程序,可任意控制频率变化范围,fotran,自写程序,源码。-Standard sine sweep wave generator, we can control the frequency range, fotran, since the writing process, the source code.
C_FFT-program-
- 用C语言编写的做快速傅立叶变换的程序,自己输入一个正弦函数的频率,选择采样点数和频率,做快速傅立叶变换-Written in C do fast Fourier transform program
The-method-of-least-squares
- 利用最小二乘法的原理高精度估计正弦波信号的幅值,频率和初相-The principle of using the least squares method estimated sine wave signal amplitude, frequency and initial phase of high-precision
