搜索资源列表
K_smooth
- The subroutines glkern.f and lokern.f use an efficient and fast algorithm for automatically adaptive nonparametric regression estimation with a kernel method. Roughly speaking, the method performs a local averaging of the observations when es
lwpr.rar
- 局部线性回归方法及其稳健形式已经被看作一种有效的非参数光滑方法.与流行的核回归方法相比,它有诸多优点,诸如:较高的渐近效率和较强的适应设计能力.另外,局部线性回归能适应几乎所有的回归设计情形却不需要任何边界修正。,Local linear regression methods and their solid form has been seen as an effective non-parametric smoothing method. Contrary to popular kernel
poly_svm
- 核函数是利用支持向量机解决不可分问题时引入的一种非线性变换的手段。基本思想是通过非线性变换,使样本变换之后的特征空间中变得线性可分。然后利用线性可分时构造最优超平面的方法,在特征空间中实现最优超平面的求解。-Kernel function is the use of support vector machine to resolve the issue can not be separated from the introduction of a nonlinear transform mean
45095smoothing
- 这个帖子中我想讨论的是移动窗口多项式最小二乘拟和平滑方法,粗糙惩罚方法,以及kernel平滑方法。-Posts in this discussion I think are moving window least squares polynomial fitting smoothing method, crude methods of punishment, as well as the kernel smoothing method.
KPCA
- KPCA是一种基于核的主要成分分析,是一种由线性到非线性之间的桥梁。通过非线性函数把输入空间映射到高维空间,在特征空间中间型数据处理,引入核函数,把非线性变换后的特征空间内积运算转换为原始空间的核函数计算。 基本思想是通过某种隐士方法将输入空间映射到某个高维空间(特征空间),并在特征空间实现PCA。对该算法进行了详细的说明-KPCA is a kernel-based principal components analysis, is a bridge between the linear
kifmm3d.tar
- 3D Kernel independent fast multipole method. 此算法为上世纪十大算法之一,这是对于矩阵计算的O(N)的快速算法。-3D Kernel independent fast multipole method. Algorithm is one of the top ten algorithms of the last century, this is a fast algorithm for matrix calculation of O (N).
kde
- kernel density estimation based on fast marching method
kifmm_fda.tar
- Kernel independent fast multipole method, directional fast multipole method and their applications in fast boundary element analyses.
