搜索资源列表
AForge.NET
- C#开发的计算机视觉及人工智能领域的一个功能非常强大的类库,包括图像处理库、计算机视觉库、机器学习库、视频处理库等。-AForge.NET Framework is a C# framework designed for developers and researchers in the fields of Computer Vision and Artificial Intelligence- image processing, computer vision, neural networks
Histograms-of-Oriented-Gradients
- HOG descr iptors 是应用在计算机视觉和图像处理领域,用于目标检测的特征描述器。-HOG descr iptors are used in computer vision and image processing for target detection feature descr iptor.
MeanPShift
- 李志国硕士学位论文:基于Mean Shift算法的目标跟踪.目标跟踪技术在军事、工业、安保、智能交通、医学和科学研究等方面都具有重要的意义,应用前景广阔.目标跟踪把图像处理、自动控制、信息科学有机结合起来,形成了一种能从图像信号中实时地自动识别目标、提取和预测目标位置信息、自动跟踪目标运动的技术,是当前计算机视觉、模式识别与智能系统等领域研究的重要课题.-Li Zhiguo Master Thesis: Based on Mean Shift Algorithm for Target Track
Computer-vision-based-lpr-System
- 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,用电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所 指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提 取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学
rengongzhineng
- 这是研究生研一的人工智能与计算机视觉还有图像处理的课件,内容丰富,讲解非常详细,对学习很有帮助。-This is a postgraduate research of artificial intelligence and computer vision and image processing courseware, rich in content, very detailed, is very helpful for learning.
dicbelevel
- 字典学习,可以用于视觉图像的处理,例如恢复,重建,去噪-Dictionary to learn, can be used to deal with visual images, such as rehabilitation, reconstruction, de-noising, etc.
AForge.NET
- AForge.NET是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,模糊系统,机器人控制等领域。-AForge.NET is a specialized developer and researcher based C# framework designed, he included computer vision and artificial intelligence, image processing, neural netw
DeepLearnToolbox_CNN_lzbV3.0
- CNN - 主程序 参考文献: [1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006 [2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998 [3] https://github.com/rasmusbergpalm/DeepLearnToolbox 作者:陆振波 电子
OpenCode_luzhenbo
- [原创]混沌分析,聚类分析,支持向量机,群体智能优化,深度学习(卷积神经网络)Matlab工具箱全开源版本下载 作者: 陆振波 毕业院校:海军工程大学,船舶与海洋工程(水声工程),博士 精通方向:信号处理,图像处理,人工智能,模式识别,支持向量机,深度学习,机器学习,机器视觉,群体智能,非线性与混沌,Matlab与VC++混编,大数据 擅长技能:团队激励,战略规划,企业文化,组织架构,C,C++,Matlab,OpenCV,并行计算,图像处理,智能视觉,卷积神经网络,人脸检测,行
NatureDeepReview
- 深度学习允许由多个处理层组成的计算模型来学习具有多个抽象层次的数据表示。这些方法极大地提高了语音识别、视觉对象识别、目标检测以及药物发现和基因组学等许多领域的最新进展。深度学习发现复杂的结构在大数据集,通过使用反向传播算法来指示一台机器应该如何改变其内部参数,用于计算在每一层的代表性,从上一层的代表。深层卷积网在处理图像、视频、语音和音频方面取得了突破性进展,而递归网络则在文本和语音等连续数据上起到了作用。(Deep learning allows computational models th
HOG 代码.docx
- HOG 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子(The Histogram of Oriented Gradient (HOG) feature is a feature descr iptor used for object detection in computer vision and image processing.)
Deep Learning with Python
- 本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Fran?ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉、自然语言处理、生成式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。(Deep Learning with Python intr
Python深度学习.pdf+代码
- 本书由Keras之父、现任Google人工智能研究员的弗朗索瓦?肖莱(Franc?ois Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,包括计算机视觉、自然语言处理、产生式模型等应用。书中包含30多个代码示例,步骤讲解详细透彻。由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读。在学习完本书后,读者将具备搭建自己的深度学习环境、建立图像识别模型、生成图像和文字等能力。(This book is written by Franc
