搜索资源列表
-
2下载:
贝叶斯优化算法是一种新的演化算法,通过贝叶斯概率统计的知识来学习后代,可是使演化朝有利的方向前进,程序用C实现了贝叶斯优化算法。-Bayesian Optimization Algorithm is a new evolutionary algorithm, through Bayesian probability and statistics to learn the knowledge of future generations, but to enable the evolution to
-
-
0下载:
bayeserr - Computes the Bayesian risk for optimal classifier.
% bayescln - Classifier based on Bayes decision rule for Gaussians.
% bayesnd - Discrim. function, dichotomy, max aposteriori probability.
% bhattach - Bhattacharya s upper limit of
-
-
0下载:
最小错误概率贝叶斯分类器的matlab程序,可用于二维数据的分类以及分类效果的图像显示,可帮助初学者加深对贝叶斯分类算法的理解。-This is a matlab program of the minimum probability of error of Bayesian classifier.Which can display the image of two-dimensional data classification and the classification results . I
-
-
1下载:
贝叶斯分类器,利用后验概率,对已知属性对象进行分类-Bayesian classifier, the use of posterior probability of the known properties of the object classification
-
-
1下载:
这系列课件系统地讲述了模式识别的基本理论和基本方法。内容涵盖了贝叶斯决策、概率密度函数的估计、线性判别函数、邻近法则、特征的选择和提取、非监督学习、神经网络、模糊模式识别等。-This series of courseware on a pattern recognition system to the basic theory and basic methods. Covers the Bayesian decision-making, the estimated probability de
-
-
1下载:
突变分为如下主要的几种:均值突变(最常见)、方差突变、线性回归突变(也称趋势突变)、概率突变、空间型突变、谱突变、模型参数突变,等等。贝叶斯突变检测属于概率突变检测方法,其特点是能给出突变点的概率分布图。-Mutations are divided into the following main categories: the mean mutation (the most common), variance mutation, linear regression mutation (also
-
-
0下载:
朴素贝叶斯公式文本分类 把一片文章读入一个矩阵 分别计算每个词对应训练网络出现的概率 -Bayesian text classification to an article in the formula to read a matrix were calculated for each word corresponds to the training network the probability
-
-
0下载:
贝叶斯学习概率的算法设计Bayesian probability algorithm-Bayesian probability Bayesian probability algorithm algorithm
-
-
0下载:
用parzen来计算所选的数据的概率密度函数,所选的窗函数是方窗,最后基于最小错误率的贝叶斯进行分类-With parzen selected data to calculate the probability density function, the selected window function is the side window, and finally the smallest error rate based on Bayesian classification
-
-
0下载:
贝叶斯分类器matlab代码,主要利用naive bayes分类器的思想利用后验概率进行分类。-Bayesian classifier matlab code, after the main use of naive bayes classifier utilizing the posterior probability ideological classification.
-
-
0下载:
本程序是用作贝叶斯推论的,训练好分类器,用于计算联合概率密度实现推理-This procedure is used for Bayesian inference, well trained classifier is used to calculate the joint probability density to achieve reasoning
-
-
1下载:
(不错的一篇文章,已被EI收录)模型预测控制(model predictive control,MPC)路径规划算法适用于三维动态环境下的无人机(un-manned aerial vehicle,UAV)路径规划;动态贝叶斯网络(dynamic Bayesian network,DBN)能够有效推理战场态势,对无人机进行威胁评估。针对威胁尾随无人机时的路径规划问题,构建 DBN 威胁评估模型,将 UAV 在战场环境中的威胁态势用威胁等级概率表示,与 MPC 路径规划算法相结合,得到基于 DBN
-
-
0下载:
贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类-Bayesian classifier classification principle is a priori probability of an object by using the Bayesian formula to calculate the probability of subsequent experience, that is,
-
-
0下载:
In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is a mode of the posterior distribution.
-
-
0下载:
包含光伏电池模块、MPPT模块、BOOST模块、逆变模块,包括主成分分析、因子分析、贝叶斯分析,从先验概率中采样,计算权重。- PV modules contain, MPPT module, BOOST module, inverter module, Including principal component analysis, factor analysis, Bayesian analysis, Sampling a priori probability, calculate the
-
-
4下载:
本报告对 朴素贝叶斯模型及线性判别分析、二次判别分析 进行系统测试
“生成模型”是机器学习中监督学习方法的一类。与“判别模型”学习决
策函数和条件概率不同,生成模型主要学习的是联合概率分布??(??,??)。本
文中,我们从朴素贝叶斯算法入手,分析比较了几种常见的生成模型(包
括线性判别分析和二次判别分析)应用于多因子选股的异同,希望对本领
域的投资者产生有实用意义的参考价值。(This report gives a systematic test of naive Bayesian
-
-
1下载:
贝叶斯网络,又称信念网络(Belief Network, BN), 或有向无环图模型,是由一个有向无环图(DAG,Directed acyclic graphical model)和条件概率分布(即知道P(xi|parent(xi))发生的概率构成,其中parent(xi)为指向xi的直接父节点)。它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。(Bayesian networks, also known as belief networks (B
-
-
2下载:
Probabilistic Programming and Bayesian Methods for Hackers是一本写给开发者的关于贝叶斯方法和概率问题的免费开源书。贝叶斯方法的用途十分广泛,在经济学上能找出一堆的例子。而在IT行业,机器学习是非常典型的一个应用。而机器学习也是本书作者写本书的一个重要的理由。
本书选择了Python作为编程语言,这一点都不奇怪,Python在科研和数据分析上的应用是非常方便和普遍的,比如大名鼎鼎的Numpy等。作者在本书中使用另一个库PyMC,它依赖
-
-
0下载:
贝叶斯网络应用的一个例子,吸烟患病模型
1建立贝叶斯网络结构并制定条件概率表
2画出建立好的贝叶斯网络
3输入证据,进行推理
4显示推理结果(An example of a Bayesian network application, the smoking model
1 Establish a Bayesian network structure and establish a conditional probability table
2 draw a well-establis
-