搜索资源列表
bayesfunction
- bayeserr - Computes the Bayesian risk for optimal classifier. % bayescln - Classifier based on Bayes decision rule for Gaussians. % bayesnd - Discrim. function, dichotomy, max aposteriori probability. % bhattach - Bhattacharya s upper limit of
基于VC的神经网络开发程序包(原码)
- 可以用C++语言开发各种神经网络:BP,RBF,HOP~…………,使用前请看看说明文档,然后建立一个自己的项目文件,只要能明白作者的思路就能很方便地进行各种神经网络的设计,本人现在就在一个系统中使用它,目前这个开发包的版本已进入0.7了,但功能差不多,本人认为0.5这个版本用着也很方便,所以把他发来,大家共享。-C language can be used to develop a variety of neural networks : BP, RBF, HOP ~ ... ... pleas
MGA
- 这是一个基于多智能体的遗传算法,算法中以一个30维Rastrigin的函数(该函数有无数个局部积小点一个最小点)为例进行了演示——连续独立运行五十次,每次的解小于1e-4,使用了matcom45和C++的混合编程,请先下载后使用程序-This is a Multi-agent-based genetic algorithm with a 30-dimensional Rastrigin function (the function has numerous local small plot po
cp321123
- 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交
SGA
- 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂
lsyc
- 信道容量C的迭代算法 函数说明: [CC,Paa]=ChannelCap(P,k) 为信道容量函数 变量说明: P:输入的正向转移概率矩阵,k:迭代计算精度 CC:最佳信道容量,Paa:最佳输入概率矩阵 Pa:初始输入概率矩阵,Pba:正向转移概率矩阵 Pb:输出概率矩阵,Pab:反向转移概率矩阵 C:初始信道容量, r:输入符号数,s:输出符号数 -Channel capacity C o
xxs
- 信道容量C的迭代算法 函数说明: [CC,Paa]=ChannelCap(P,k) 为信道容量函数 变量说明: P:输入的正向转移概率矩阵,k:迭代计算精度 CC:最佳信道容量,Paa:最佳输入概率矩阵 Pa:初始输入概率矩阵,Pba:正向转移概率矩阵 Pb:输出概率矩阵,Pab:反向转移概率矩阵 C:初始信道容量, r:输入符号数,s:输出符号数 -Channel capacity C o
GAprog
- 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂
renlianshibie
- 人脸识别的C++源码神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。-The neural network s input can be lower resolution of face image, local area of the autocorrelation function, local texture of second order moment, etc. This kin
