搜索资源列表
LVQ学习矢量化算法
- LVQ学习矢量化算法源程序 This directory contains code implementing the Learning vector quantization network. Source code may be found in LVQ.CPP. Sample training data is found in LVQ1.PAT. Sample test data is found in LVQTEST1.TST and LVQTEST2.TST. The
lyap_small_data_sets
- 小数据量法 求指数. 计算数组最大值.求最短距离及向量-small data Method index. Calculation array maximum. For the shortest distance vector
Perceptron-and-ADALINE-network
- 这些程序包括以下方面1.使用感知器和ADALINE网络对字母进行识别。2.随机选取初始权向量,选取适当的迭代步长(对ADALINE网络),用给出的四个输入训练样本,对上述两个网络分别进行训练,直到网络收敛;3.对Adaline网络选取不同的值,分别画出误差曲线,观察它们的变化规律;4.对感知器选取不同的初始权向量,分别计算每类训练样本到超平面的距离,观察它们的异同;5.训练结束后,检验网络的识别能力(使用100个检测样本,对应于每个取25个含噪的变形):6.比较Adaline和单神经元感知器的分
sfrz
- 基于等距映射( ISOMAP) 非线性降维算法, 提出了一种新的基于用户击键特征的用户身份认证算法, 该算法用测地距离代 替传统的欧氏距离, 作为样本向量之间的距离度量, 在用户击键特征向量空间中挖掘嵌入的低维黎曼流形, 进行用户识别。用采集 到的1 500 个击键模式数据进行实验测试, 结果表明, 该文的算法性能优于现有的同类算法, 其错误拒绝率( FRR) 和错误通过率 ( FAR) 分别是1.65 和0 , 低于现有的同类算法。-Based isometric map (ISO
SVM
- 使用最小距离法对0-9个数字进行判别,包括特征提取等,用支持向量机-Use minimum distance of 0-9 numbers to discriminate, including feature extraction, support vector machine
DocDistance
- java实现的文本相似度系统,使用向量空间模型以及余弦相似度距离公式,实测可以实现2篇文本的相似度计算且有一定的效果。-Java text similarity system, using the vector space model and the cosine similarity distance formula, the measured results can be achieved two similarity of text and have some effect.
