搜索资源列表
discriminable_matirx_builder
- 实现了粗糙集理论的可辨识矩阵的生成,输入为一个文本文件的数据方阵,以数据之间用Tab分开,用回车键分行,用Skowron用可辨识矩阵的方法实现对不分明类的生成。压缩包里面还有一个测试数据。-realization of the rough set theory of identification matrix generation, import text files to a data matrix. Data used to Tab between the separate branches
CSzhongsu
- 该文对压缩感知理论进行了综述,对压缩感知的稀疏表示、观测矩阵、编码、解码和有待研究的关键问题进行了综述-This paper summarizes the theory of compressed sensing, sparse representation of compressed sensing, observation matrix, encoding, decoding and the key issues to be examined were reviewed
compressive-sensing-singal
- 压缩感知的主要研究内容有信号的稀疏表达、观测矩阵的设计和信号恢复。精确的信号恢复算法是压缩感知中的关键。因此本文在压缩感知理论框架下研究恢复算法中的凸优化算法- Compressive sensing offers a variety of research fields, including signal sparse representation, sensing matrix design, signal reconstruction. Accurately signal reconstr
