搜索资源列表
-
0下载:
目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺
-
-
0下载:
这是一个很好的支持向量机工具箱,它可用于模式识别,图像识别,文字识别,语音识别和手写体识别等领域。-This is a very good support vector machine toolbox, it can be used for pattern recognition, image recognition, text recognition, speech recognition and handwriting recognition and other fields.
-
-
1下载:
支持向量机(SVM)是一种基于超平面分类的新的学习方法,具有很强的泛化能力。研究了支持向量机的学习机理,以及实现支持向量机的序贯最小优化算法(SMO),并用来对舰船图像进行识别。首先将待识别目标进行二维小波分解,获取不同尺度下的小波系数,然后对其进行主元分析,得到的主元分量作为支持向量机的特征量输入。实验结果表明,该方法具有良好的分类性能。-Support Vector Machine (SVM) is a hyperplane-based classification of new learn
-
-
0下载:
为了提高白细胞自动识别算法的性能,提出了基于均值移动和单类支持向量机的血细胞图像分割新方法. 该方法的原理是将图像中颜色相对稳定的背景和红细胞部分像素作为正训练样本,将颜色复杂多样的白细胞像素作为异常数据检测. 均值移动过程用来在红、绿、兰(RGB) 颜色空间寻找正训练样本集,通过均匀抽样和颜色量化措施,实现单类支持向量机(SVM) 在线实时训练,最终图像像素经过单类SVM 分类来实现分割. 实验表明,新方法对涂片制备和光照变化导致的图像颜色改变有很好的适应性,图像分割精度优于常用流域算法,而耗
-
-
0下载:
基于神经网络的遥感图像分类取得了较好的效果,但存在固有的过学习、易陷入局部极小等缺点.支持向量机机器学习方法,根据结构风险最小化(SRM)原理,表现出很多优于其他传统方法的性能,本研究的基于多类支持向量机分类器的遥感图像分类取得了达95.4 的分类精度.但由于遥感图像分类类别多,所需训练样本较大,人工选择效率较低,为此提出以人工选择初始聚类质心、C均值模糊聚类算法自动标注训练样本的基于多类支持向量机的半监督式遥感图像分类方法,期望能在获得适用的分类精度的基础上有效提高分类效率-Neural ne
-
-
0下载:
支持向量机(SVM)是在统计学习理论的基础上发展起来的新一代学习算法,该算法在文本分类、手写识别、图像分类、生物信息学等领域中获得了较好的应用。本书是SVM的权威参考书。-Support Vector Machine (SVM) is a new learning algorithm developed on the basis of statistical learning theory, the algorithm to obtain a better application in the
-
-
0下载:
英文版的支持向量机的理论,有详细的理论证明,便于理解图像的目标跟踪问题-Support vector machine English version of the theory, a detailed theoretical proof, easy to understand the image target tracking problem
-
-
5下载:
CNN - 主程序
参考文献:
[1] Notes on Convolutional Neural Networks. Jake Bouvrie. 2006
[2] Gradient-Based Learning Applied to Document Recognition. Yann LeCun. 1998
[3] https://github.com/rasmusbergpalm/DeepLearnToolbox
作者:陆振波
电子
-
-
7下载:
[原创]混沌分析,聚类分析,支持向量机,群体智能优化,深度学习(卷积神经网络)Matlab工具箱全开源版本下载
作者: 陆振波
毕业院校:海军工程大学,船舶与海洋工程(水声工程),博士
精通方向:信号处理,图像处理,人工智能,模式识别,支持向量机,深度学习,机器学习,机器视觉,群体智能,非线性与混沌,Matlab与VC++混编,大数据
擅长技能:团队激励,战略规划,企业文化,组织架构,C,C++,Matlab,OpenCV,并行计算,图像处理,智能视觉,卷积神经网络,人脸检测,行
-