搜索资源列表
bayes在分类中的应用
- 程序用C语言实现了贝叶斯在数据挖掘中分类和预测中的应用,通过程序可以很好的进行分类和预测。-This program use C language to realize the application of bayes in data mining and forecasting,you can use this program to make a good classification and forecasting
演化程序——遗传算法和数据编码的结合
- 演化程序——遗传算法和数据编码的结合 具体介绍了遗传算法的应用-evolutionary process -- genetic algorithms and data encoding the specific combination of the application of genetic algorithms
MarkovAnalysis
- 用C++编写的遗传算法,markov是应用在入侵检测上的 用的数据是 http://www.cs.unm.edu/~immsec/data/synth-sm.html 上的 -prepared by the genetic algorithm, Markov is the application Intrusion Detection of the data used is http : / / ~ www.cs.unm.edu/ immsec / data / Jr.-sm.h the
rosetta-1.0.1
- 粗糙集应用软件,方便完成数据挖掘、知识总结-Rough Set application software to facilitate the completion of data mining, knowledge summary
GA-wangxp
- 王小平《遗传算法——理论、应用与软件实现》随书光盘,内容有: \\GA 本书中所附源程序C或C++代码文件及其可执行文件 Scs.cpp 基本分类算法源程序,输入数据文件cfile.txt,efile.txt,gfile.txt,pfile.txt,rfile.txt,tfile.txt Sga.c 基本遗传算法源程序, 输入数据文件input,输出文件output A_life.c 基于遗传算法的人工生命模拟源程序, 输入数据文件world GA_nn.c 基于遗传算法优
pellet-2.3.0一种基于Tableau算法的描述逻辑推理机
- Pellet是一种基于Tableau算法的描述逻辑推理机,由美国马里兰大学(College Park分校)的MindSwap实验室开发。此为最近的更新-Pellet is an OWL 2 reasoner. Pellet provides standard and cutting-edge reasoning services for OWL ontologies. For applications that need to represent and reason about
include
- 本程序实现对四维Iris.Data的分类处理,应用K-Means算法将其分为两类-This procedure to realize the four d Iris. The classification of the Data processing, the application of K-Means algorithm which is divided into two categories
Application_of_Neural_Networks_in_Financial_Data_M
- Application of Neural Networks in Financial Data Mining
Bayes
- 一个比较简单的模式识别问题。用female.txt 和male.txt 的数据作为训练样本集,建立Bayes 分类器,用测试样本数据set1.txt、set2.txt、set3.txt 对该分类器进行测试,分别应用单个特征及两个特征进行实验-A relatively simple pattern recognition problem. Female.txt and male.txt use data as a training sample set, the establishment of
pegjump
- 设计一类peg jump问题的求解系统,初步掌握智能搜索算法中的盲目搜索和启发式搜索这两类基本方法,同时通过具体的问题体会搜索算法、数据结构、程序设计等知识的综合应用。-Peg jump for a class of design problem solving systems, intelligent search algorithm for the initial grasp of the blind search and heuristic search these two types o
a.m
- Matlab仿真程序,介绍了数据的程序结构、运用和算法设计。-Matlab simulation program, introduced procedures for data structure, application and algorithm design.
k_means
- k-means(欧氏距离)聚类算法是最基本的聚类算法,是理解和应用聚类算法的基础,通过k-means(欧氏距离)聚类算法我们才可以初步了解数据挖掘的原理。-k-means (Euclidean distance) clustering algorithm is the most basic clustering algorithm, is understanding and the basis for the application of clustering algorithm, throu
KMEANS
- K-Means动态聚类算法源程序 在数据挖掘中的应用-K-Means dynamic algorithm source data mining application
SVMhybridsystem
- A distributed PSOSVM hybrid system with feature selection and parameter optimization -Abstract This study proposed a novel PSO–SVM model that hybridized the particle swarm optimization (PSO) and support vector machines (SVM) to improve the clas
shujuwajue
- 数据挖掘中模糊聚类分析对医学新生计算机分层教育的应用研究.pdf-----vb的数据挖掘,别人的文章,大家共享-Fuzzy Cluster Analysis in Data Mining of Medical Education freshmen computer application layer. Pdf----- vb data mining, other people' s articles, share
A-hybrid-least-squares
- A hybrid least squares support vector machines and GMDH approach for river fl ow forecasting-This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares supp
Application-of-optimized-Elman--
- 对量子粒子群优化(QPSO) 算法进行研究,提出了自适应量子粒子群优化(Adaptive QPSO) 算法,用于优化Elman 神经 网络的参数,改进了Elman 神经网络的泛化能力。利用网络流量时间序列数据进行预测,实验结果表明,采用AQPSO 算法优 化获得的Elman 神经网络模型不但具有较强的泛化能力,而且具有良好的稳定性,在网络流量时间序列数据的预测中具有 一定的实用价值-Quantum-behaved particle swarm optimization (QPSO)
data-mining-application-research
- 数据 挖掘就是面对海量的存储数据建立数学模型,找出隐含的业务规则和有价值的信 息,在实际应用中发挥作用 -Data mining is the face of vast amounts of stored data to a mathematical model to identify the implicit business rules and valuable information to play a role in practical applications
Data-analysis-of-the-application
- 把时间序列分析的方法和理论引入业务监控中。本文的创新点 在于利用AR州人模型建模前,通过孤立点和变点检测对数据做预处理, 先用控制图法去除孤立点,然后用变点检测的方法定位变点,最后对变 点前后的时间序列分段预测,从而提高了预测的准确度和可信度 -Time series analysis methods and theoretical introduction of the service monitoring. Innovation of this paper is to use
TensorFlow tf.data 导入数据(tf
- tensorflow 数据集的建立方法与实战应用 数据集建立的四种方法 技巧和需要注意的关键点(Tensorflow data set establishment method and practical application Data set four methods Tips and key points to pay attention to)
