搜索资源列表
感知准则函数
- 感知准则函数,包括固定增量法和梯度下降法,都是模式识别中的基础算法.-perceptual function criteria, including fixed increment and the gradient method, which is pattern recognition algorithm based.
Conjugateexamples
- 实现共轭梯度法的实例,该算法是一种优化算法,其具体优越性相信用者自知!-achieve conjugate gradient method example, the algorithm is an optimization algorithm, the specific advantages of knowing who to believe!
BpNetJava
- 单隐层神经网络,采用标准梯度下降法进行训练-single hidden layer neural network, using standard gradient method for training
gongetidu
- 优化算法,共厄梯度法 fortran 90编译-optimization algorithm, a total of Ecuador gradient method FORTRAN 90 compiler
第四章 控制系统的分析方法
- 用Canny算子检测图像的边缘 P0404:图像的阈值分割 P0405:用水线阈值法分割图像 P0406:对矩阵进行四叉树分解 P0407:将图像分为文字和非文字的两个类别 P0408:形态学梯度检测二值图像的边缘 P0409:形态学实例——从PCB图像中删除所有电流线,仅保留芯片对象-with Canny operator to detect the edges in the image P0404 : image thresholding segmentation P0405 : water
Seven-RBF_NN--code
- 七个RBF神经网络的源代码:基于梯度法、OLS 、聚类、k均值聚类、函数逼近的RBF 网设计算法,及预测模型 -Seven RBF neural network source code: gradient-based method, OLS, clustering, k-means clustering, function approximation of the RBF network design algorithms, and predictive models
RBF
- 基于梯度法编写的RBF神经网络程序,实现对输入数据的逼近-Gradient method based on the preparation process of the RBF neural network to achieve the approximation of the input data
bp
- 用bp算法拟合正弦曲线,并采集数据。其基本思想是梯度下降法。-Sine curve fitting algorithm with a bp, and collecting data. The basic idea is the gradient descent method.
bpnnet_154
- L-M算法。除了动量法(基于梯度下降的训练算法)外,学习率自适应调整策略是BP算法改进的另一种途径,它利用Levenberg-Marquardt优化方法,从而使得学习时间更短。其缺点是,对于复杂的问题,该方法需要很大的存储空间。 -L-M algorithm. In addition to momentum (based on the gradient descent algorithm for training), learning rate adaptive strategy is to i
Steepest
- 计算梯度下降法计算极值,只能找到局部最小点。可以通过调整步长实现全局最小-Calculation of gradient descent method to calculate extreme value, can only find local minimum point. By adjusting the step size can achieve the global minimum
improveBPNet
- 改进的BP算法实现程序,以共轭梯度法实现BP神经网络。测试数据以txt格式给出。-Improved BP algorithm procedures in order to conjugate gradient method to achieve BP neural network. Test data given in txt format.
conjg
- 《神经网络与机器学习》书中的,根据共轭梯度法进行双月型数据的分类-" Neural Networks and Machine Learning" book, according to the conjugate gradient method for data classification based bimonthly
Gradient-descent-of--regression
- 给定一组数据,用梯度下降法进行一元线性回归。包含数据和源程序。-Given a set of data, a linear regression using the gradient descent method. Contains the data and source code
conjugategradientmethode
- 比较了三种学习方法 1 gradient descent 2 steepest descent with line search 3 conjugate gradient method. 三种方法都在一个.m文件中被实现。-compare three learning methods: 1 gradient descent 2 steepest descent with line search 3 conjugate gradient method.
RBF_Gradient
- 该程序组是基于梯度下降算法的RBF网络实现过程,包含了RBF隐含层神经元等参数的具体确定步骤。-this is the RBF network with gradient method
HousePrice(gradient-descent)
- 利用机器学习算法实现南京房价预测。已知2000年至2013年的南京房价,利用梯度下降法预测2014年南京房价。-Nanjing using machine learning algorithm to predict prices. Known 2000-2013 Nanjing prices, using the gradient descent method to predict 2014 Nanjing prices.
cg
- 最优化方法中的共轭梯度法,使我们老师写的matlab代码,绝对没有问题-Optimization Method of Conjugate Gradient Method
BP网络
- BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法(梯度法),通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input layer)、隐层(hide layer)和输出层(outpu
rbf
- 自己编写RBF神经网络程序,RBF神经网络隐层采用标准Gaussian径向基函数,输出层采用线性激活函数,其中数据中心、扩展常数和输出权值均用梯度法求解,它们的学习率均为0.001。其中隐节点数选为10,初始输出权值取[-0.1,0.1]内的随机值,初始数据中心取[-1,1]内的随机值,初始扩展常数取[0.1,0.3]内的随机值,输入采用[0 1]的随机阶跃输入(Write your own RBF neural network, RBF neural network hidden layer
Handwritten_digit_classification
- 分别使用梯度法和牛顿法训练数据,从而得到3和5两个数字的训练模型,对测试集进行判决,得到训练错误率(The training data were trained by the gradient method and Newton method, and the training models of 3 and 5 numbers were obtained. The test set was judged and the training error rate was obtained.)
