搜索资源列表
-
4下载:
基于BP神经网络,根据鸢尾花多组数据先训练网络再对样本进行测试,给出分类结果,Based on BP neural network, in accordance with multiple sets of data iris network before training again for testing classification results are given
-
-
0下载:
bp神经网络对鸢尾属植物分类,用四个特征进行分类,分类正确率100 - iris data classification using bp neural network
-
-
0下载:
本程序实现对四维Iris.Data的分类处理,应用K-Means算法将其分为两类-This procedure to realize the four d Iris. The classification of the Data processing, the application of K-Means algorithm which is divided into two categories
-
-
0下载:
Computational Intelligence IRIS dataset Classification
-
-
1下载:
matlab写的自己设计的自适应网络做iris聚类分析并分类的实验,算法不是很稳定,有一定参考价值-matlab write ,adaptive cluster analysis and classification of iris experiment, the algorithm is not very stable and have a certain reference value
-
-
3下载:
利用bp算法对鸢尾花数据进行分类的matlab实现程序-Bp algorithm using iris data classification procedures to achieve matlab
-
-
0下载:
应用bp算法实现对iris数据库的分类,iris数据库是人们广泛使用的用于模式分类的实例系统。它含有150个例子,分为三类,每个类由四个实数特征值描述,分别表示萼片(sepal )长度,萼片宽度,花瓣(petal )长度,花瓣宽度。问题是根据这四个特性值分类三种iris 植物,输入为四个特征值和类别 (5.1 3.5 1.4 0.2 0),输出算法分类结果 -Bp algorithms applied to the iris database, the classification, iris
-
-
1下载:
使用bp神经网络进行分类。包括鸢尾花数据,以及训练过程和分类结果。包含非常详细的注释。-Use of bp neural network classification. Including the iris data, and training process and classification results. Contains very detailed notes.
-
-
1下载:
k-means及Isodata 聚类算法的实现,用c++代码实现,输入数据为Iris,输出分类类结果。
包含Iris数据及所有头文件和.cpp文件。-Isodata k-means clustering algorithm and implementation, using c++ code implement,. the input data is the Iris, the output classification class results.
contains Iris d
-
-
0下载:
使用BP网络实现了对Iris数据的分类,使用了可变学习速率和带动量的梯度下降算法。-Using the BP network realizes the classification of Iris data, the use of the variable learning rate and the amount of gradient descent algorithm driven.
-
-
0下载:
matlab语言编写的iris数据的BP神经网络分类-matlab iris data written in BP neural network classification
-
-
0下载:
数据挖掘经典数据,鸢尾花分类,txt形式矩阵,直接使用非常方便。-Classical data mining data, iris classification, the form of TXT matrix directly, very convenient to use.
-
-
0下载:
模式识别中用于完成数据的分类而用到的一种方法-k近邻。是将已有数据划分到3个类中,本方法中解决数据Iris数据的划分问题。将150个4维数据划分到3类。K近邻法是求最近的K个元素从而将其划分到已有类中。-Pattern recognition for the completion of the classification of the data used in a way-k neighbors. The existing data are divided into three classes
-
-
0下载:
VC++中实现K近邻分类方法,实验数据是著名的iris数据库,此方法是数据挖掘,机器学习,人工智能等课程中重要的分类算法。-K-nearest neighbor classification VC++, experimental data is the famous iris databases, data mining, machine learning, artificial intelligence courses classification algorithm.
-
-
0下载:
有导师学习神经网络的分类——鸢尾花种类识别,需要的同学可以下载-Learning from the classification neural network- iris species identification, students need to be downloaded to try
-
-
1下载:
BP神经网络matlab实现,程序直接下载就可以运行,全部打包好。该程序主要用于分类iris数据,程序很完整,但不同于网络大部分程序,思路很好,值得学习,适用于初学BP神经网络的人。-BP neural network matlab realize, you can run the program directly download all packed. The program is mainly used for classification iris data, the procedure
-
-
1下载:
python鸢尾花(iris)数据分类程序举例,采用随机森林算法。(Python iris flower (IRIS) data classification program is used for example, and the random forest algorithm is used.)
-
-
1下载:
python鸢尾花(iris)数据分类程序例子,采用adaboost算法。(Python iris flower (IRIS) data classification program examples, using the AdaBoost algorithm.)
-
-
0下载:
利用逻辑回归原理算法实现经典的鸢尾花分类问题(Using logistic regression algorithm to realize classical iris classification problem)
-
-
1下载:
通过python进行编程,运用贝叶斯算法原理,对iris数据集进行分类(Classification of iris data sets by Bayes)
-