搜索资源列表
S200502106_SVM_for_classfication
- SVM用于模式识别 整理别人的代码(原来的是英文)所得: kernel.m用于内积矩阵的计算 svcplot.m用于绘图 svm168.m是主程序 testlin.m是采用线形内积函数的支持向量机应用的 文件 testrbf.m是采用RBF内积函数的支持向量机应用 的 文件 每个文件中都有说明。 仿真平台matlab7.0, 仿真全部通过 将所有文件拷贝到work目录下(注意不要直接将上层文件夹直接拷贝到work目录下,若那样操作,必须在matla
stprtool15aug08
- 统计模式识别算法包,包括线性分类算法,SVM,PCA,LDA,EM,k-means分类等多种常用的模式识别算法。-Statistical pattern recognition algorithm package, including a linear classification algorithm, SVM, PCA, LDA, EM, k-means classification and many other commonly used pattern recognition algori
libsvm-2.89
- 是一種線性方成的分類器。SVM透過統計的方式將雜亂的資料以NN的方式分成兩類,以便處理。LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear SVM. -Main features of LIBLINEA
nonlinear_regression_SVM
- 用于在matlab中实现非线性回归的支持向量机svm算法-Used matlab to implement non-linear regression algorithm of support vector machines svm
Matlab-svm-BP-compare
- 支持向量机和BP神经网络虽然都可以用来做非线性回归,但它们所基于的理论基础不同,回归的机理也不相同。支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。为了验证这种观点,本文编写了支持向量机非线性回归的通用Matlab程序和基于神经网络工具箱的BP神经网络仿真模块,仿真结果证实,支持向量机做非线性回归不仅泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。-SVM and BP neural networks, although non-linear regr
nonlinear-svm-code
- svm线性和非线性的处理源代码。加了很多说明,希望对你有帮助-SVM linear and nonlinear processing the source code. Add a lot of shows, the hope is helpful to you
spider
- 机器学习matlab源代码,包括多分类SVM,模式识别,特征选择,回归等算法。-The spider is intended to be a complete object orientated environment for machine learning in Matlab. Aside from easy use of base learning algorithms, algorithms can be plugged together and can be compared with
fdtool
- 利用局部二位模式和haar特征进行人脸或目标识别。-This toolbox provides some tools for objects/faces detection using Local Binary Patterns (and some variants) and Haar features. Object/face detection is performed by evaluating trained models over multi-scan windows with
mysvm
- SVM,支持向量机,matlab 实现,具体实现了SMO算法,线性核,高斯核-SVM,support vector machine ,matlab implement m, In details ,implement SMO algorithm,linear kernel ,RBF kernel
