搜索资源列表
abooy
- hga是一种混合遗传算法c程序源代码,但是只包括了核心的算法部分,还没有完善。 gauss为电路试验中的高斯消去法。 GRKT10,Lagrange,Euler分别是数值计算中龙格-库塔法,拉个朗日法以及改进欧拉法的c程序实现 上述程序都是本人工作学习过程中自己编写的,本人只是一个程序新手,希望在本站能更好的学习-Unit is a mixed genetic algorithm c source code, however, covered only the core of the
mathmodel
- 这是一个好的建模学习资料,赶快下载吧, 数学建模十大算法 ( 包含:蒙特卡罗算法、数据拟合、参数估计、 插值等数据处理算法、线性规划、整数规划、多元规划、二次规划等规划类问题、 图论算法、动态规划、回溯搜索、分治算法、分支定界等计算机算法、 最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法、 网格算法和穷举法、一些连续离散化方法、数值分析算法、图象处理算法)-This a good model to study the information, downloa
Matlabbasedonthegeneticalgorithm
- 运用MATLAB编程实现遗传算法,数值仿真验证该方法的有效性,表明它能够对函数进行全局寻优。这种实现方法既可以熟悉MATLAB语言,又可以加深对遗传算法的认识和理解,以此来设计智能系统-Programming using MATLAB genetic algorithm, numerical simulation to verify the effectiveness of the method, that it is able to function for global optimizati
yichuan
- 根据遗传算法的基本理论,运用MATLAB编程设计实现该算法。通过数值仿真验证了该实现方法的有效性,表明它能够对函数进行全局寻优。-According to the basic theory of genetic algorithm, using MATLAB programming designed to realize the algorithm. By numerical simulation the effectiveness of the implementation method, t
Doolittle
- 此方法为求解线性方程组的方法,LU分解法也称Doolittle分解法方便,是数值计算中经常运用的一种方法-This method is the method for solving linear equations, LU decomposition, also known as Doolittle decomposition method is convenient, is often used in numerical calculation method
gaijinola
- 是C语言编写,数值计算方法,改进欧拉法方法。-Is the C language, numerical methods, improved Euler method.
intergate
- runge-kutta法,crank_nicolson法,adams法数值积分-runge-kutta method, crank_nicolson law, adams numerical integration method
Simpson_Integral_Func
- 辛普森积分法(Simpson Integration)是一类常用且有效的数值积分法中,这里提供一个使用VBA实现的辛普森积分法-Simpson integration method (Simpson Integration) is a type of numerical integration commonly used and effective method, used here to provide an implementation of the Simpson integration
gaosisaideer
- 数值计算 高斯赛德尔迭代法 用C++语言描述-High Sisaideer numerical iterative method described by C++ Language
gpops31
- 基于伪谱法的极大值原理数值算法,注意:应用此软件需要另外下载SNOPT,否则无法运行. -Pseudo-spectral method based on the maximum principle numerical algorithm, NOTE: This software requires a separate download application SNOPT, or not run.
On-State-Feedback-Control
- 状态反馈控制混沌系统 利用一种简单的线性状态反馈方法控制混沌运动 ,引导混沌系统稳定到失稳的平衡点或 周期轨道上 ,用劳斯2胡尔维茨稳定判据判定受控系统在平衡点处参数的取值范围 ,同时使用广义 Hamilton 系统理论的 Melnikov 方法分析受控系统的周期解. 通过对典型的混沌系统进行数值仿 真 ,证实了该控制方法的有效性.- A Linear state feedback control technique is used to guide the typical ch
wheel-rail-multi-point-contact
- 迹线法求轮轨接触点的位置,该理论用于轮轨车辆的数值仿真求解。-Trace method for the wheel-rail contact point position, the theory for the numerical simulation of wheel-rail vehicle solution.
Failure-Criteria
- The numerical techniques include the finite element method, boundary element method, lattice Boltzmann method, cellular automata, molecular dynamics, etc. while the analytical solutions are obtained using the homogenization techniques and the represe
ACO_NEW
- 蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。-Ant colony algorithm is a simulated evolutionary algorithm, preliminary studies show that the algorithm has many excellent properties f
4532
- 求解非线性方程组的方法研究。非线性代数方程组求解是一个基本而又重要的问题,因为在工程实践、经济学、侪息安全和动力学等方面有大量的实际问题最终转化为代数方程组,而非线性方程组的求解方法长期以来一直是工程应用和数值计算中重要的研究内容。-Research method for solving nonlinear equations. Solving nonlinear algebraic equations is a basic and important issue, because a larg
EM
- EM算法求解随机优化问题代码,用数值积分方法求解-EM algorithm for solving stochastic optimization problem code, using numerical integration method for solving
gauss_seidel
- In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a linear system of equations. It is named after the German mathematicians Carl Frie
methode_jacobie
- In numerical linear algebra, the Jacobi method (or Jacobi iterative method[1]) is an algorithm for determining the solutions of a diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged
logandre-method-in-numerical-method
- In numerical analysis and scientific computing, the Gauss–Legendre methods are a family of numerical methods for ordinary differential equations. Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods
tbtained-numerical
- 用数值方法来求解雅克比矩阵的迭代过程,并且有仿真结果(The iterative process of Jacobian matrix is solved by numerical method, and the simulation results are obtained.)
