搜索资源列表
-
0下载:
LVQ(学习矢量量化)算法:它是Kohonen的有监督学习的扩展形式,融合了自组织和有导师监督的技术。-LVQ (LVQ) algorithm : it is Kohonen of supervised learning form of the expansion, integration of self-organization and the technical supervision of instructors.
-
-
3下载:
模式识别一份很好的作业,包括线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,支持向量机-a very good operation, including linear classification; Minimum risk Bayesian classifier; Supervised learning method Hierarchical clustering analysis; K-L transform effective features, supp
-
-
0下载:
Single-layer neural networks can be trained using various learning algorithms. The best-known algorithms are the Adaline, Perceptron and Backpropagation algorithms for supervised learning. The first two are specific to single-layer neural networks wh
-
-
0下载:
监督学习是机器学习中很重要的一种技术,该压缩包中是一个快速监督学习MatLab的实现程序
-
-
0下载:
使用具有增量学习的监控式学习方法。包括几个不同的分类算法。-use with incremental learning supervised learning method. Including several different classification algorithm.
-
-
0下载:
LVQ(学习矢量量化)算法:它是Kohonen的有监督学习的扩展形式。融合了自组织和有导师监督的技术,学习方法是竞争的,但产生方式是有教师监督的,也就是说,竞争学习是在由训练输入指定的各类中局部进行。-LVQ (LVQ) algorithm : it is Kohonen of supervised learning the expansion of the form. The convergence of self-organization and supervision of the ins
-
-
0下载:
SSSvm, 半监督学习算法,文档在sourceforge上下载-SSSvm, semi-supervised learning algorithm, the document in the sourceforge download
-
-
0下载:
sssvm相关的文档,也可以在sourceforge上下载-sssvm related documents, can also be downloaded at sourceforge
-
-
0下载:
wekaUT是 university texas austin 开发的基于weka的半指导学习(semi supervised learning)的分类器-university texas austin are wekaUT the development of guidance based on semi-weka study (semi supervised learning) classifier
-
-
1下载:
这系列课件系统地讲述了模式识别的基本理论和基本方法。内容涵盖了贝叶斯决策、概率密度函数的估计、线性判别函数、邻近法则、特征的选择和提取、非监督学习、神经网络、模糊模式识别等。-This series of courseware on a pattern recognition system to the basic theory and basic methods. Covers the Bayesian decision-making, the estimated probability de
-
-
0下载:
通过设计线性分类器;最小风险贝叶斯分类器;监督学习法分层聚类分析;K-L变换提取有效特征,设计支持向量机对给定样本进行有效分类并分析结果。-By designing a linear classifier minimum risk Bayes classifier supervised learning method hierarchical cluster analysis K-L transform to extract efficient features, designed to
-
-
1下载:
包含8篇半监督学习方面的中文文献,关于半监督学习的中文文献并不是很多,我把我找到的一些文章贡献一下。分别为:“半监督学习综述”“有关半监督学习的问题及研究”“基于半监督学习的网络流量分析”“基于核策略的半监督学习方法”“一种基于半监督学习的多模态WEB查询精华方法”“半监督学习机制下的说话人辨认算法”“半监督学习在入侵系统中的应用”“基于半监督学习的眉毛图像分割方法”-Includes eight semi-supervised learning of Chinese literature on
-
-
0下载:
交互支持向量机学习算法能解决一些监督学习问
题中学习样本较少的问题, 它以支持向量机(SVM ) 方法为
基础, 将设计分类器变成一个交互的过程, 即: 根据对已知
样本进行的SVM 分类器设计, 主动采样选择“有用”的新样
本, 并进行下一步SVM 分类器的设计。与普通SVM 法相
比, 该方法所需的样本量大大降低, 而且可能达到更好的推
广能力。文本信息过滤问题的实例说明了该算法的有效性。-Interactive support vector machine lear
-
-
1下载:
义了一个欧氏距离和监督信息相混合的新的最近邻计算函数,从而将K一均值算法很好地应用于半
监督聚类问题。针对K一均值算法初始质心敏感的缺陷,用粒子群算法的搜索空间模拟聚类的欧氏空间,迭代搜
索找到较优的聚类质心,同时提出动态管理种群的策略以提高粒子群算法搜索效率。算法在UCI的多个数据集
上测试都得到了较好的聚类准确率。-Righteousness of a Euclidean distance and supervision of a mixture of new nearest n
-
-
0下载:
多示例学习是与监督学习、非监督学习和强化学习并列的第四类学习框架-Multi-instance learning with supervised learning, unsupervised learning and strengthen the learning parallel learning framework
-
-
0下载:
这是一篇关于半监督的论文,半监督学习问题广泛存在于现实世界中, 已经成为目前机器学习和模式识别领域中的一个研究热点. 文章
综述了半监督学习问题的基本思想、研究现状、常用算法及其一些应用领域, 分析了目前存在的主要困难, 并指出需进一步研究的几个问题.-Sem-i supervised learning has been w idely used in the w orld and become a hot topic in the resear ch
field of machine
-
-
0下载:
经典的书,李航讲的统计学习方法,里面主要涉及监督学习方法,感知机、K邻近法、决策树、支持向量机等-Classic book, statistical learning methods Li Hang speak, which is mainly involved in supervised learning method, Perceptron, K neighboring France, decision trees, support vector machine
-
-
0下载:
Soft-taught leaning是用的无监督学习来学习到特征提取的参数,然后用有监督学习来训练分类器.-Soft-taught leaning unsupervised learning is to learn the parameters of feature extraction, followed by supervised learning to train the classifier.
-
-
3下载:
深度学习,中文版,这本书比较详细的讲解了深度学习相关的知识(Deep learning (also known as deep structured learning or hierarchical learning) is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms. Lear
-
-
0下载:
This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a va
-